Skip to main content
Log in

A Method for Estimating the Normalized Instrument Response Function of the URAGAN Muon Hodoscope

  • COMPUTER TECHNOLOGIES IN PHYSICS
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

This paper offers a method for estimating the normalized instrument response function (IRF) of the URAGAN muon hodoscope (MH). A multiparametric model of the instrument response function is derived from digitally processed time series of MH matrix data and the hypothesis of muon-flux (MF) intensity distribution is formulated. Formulae for estimating the normalized instrument response function are devised and used in an algorithm for estimating normalized variations of functions in MF intensity. The algorithm was tested on simulated and experimental muon observation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. I. I. Yashin, N. S. Barbashina, V. V. Borog, D. V. Chernov, A. N. Dmitrieva, R. P. Kokoulin, K. G. Kompaniets, A. A. Petrukhin, V. V. Shotenko, and E. I. Yakovleva, “Real-time data of muon hodoscope URAGAN,” Adv. Space Res. 56, 2693–2705 (2015).

    Article  ADS  Google Scholar 

  2. NEVOD COMPLEX. National Research Nuclear University MEPhI. http://www.nevod.mephi.ru.

  3. A. Dal Lago, N. J. Schuch, K. Murakato, T. Kuwabara, A. G. Oliveira, E. Echer, and C. R. Bragal, “Global muon detector network used for space weather applications,” Space Sci. Rev. 182, 1–18 (2014).

    Article  ADS  Google Scholar 

  4. V. S. Murzin, Astrophysics of Cosmic Rays (Univers. Kniga, Moscow, 2007) [in Russian].

    Google Scholar 

  5. M. Bahmanabadi, “A method for determining the angular distribution of atmospheric muons using a cosmic ray telescope,” Nucl. Instum. Methods Phys. Res., Sect. A 916, 1–7 (2019).

    Google Scholar 

  6. I. I. Astapov, N. S. Barbashina, V. V. Borog, A. N. Dmitrieva, I. A. Shul’zhenko, V. V. Shutenko, E. I. Yakovleva, and I. I. Yashin, Muon Diagnostics of Magnetosphere and Atmosphere of the Earth (MIFI, Moscow, 2014) [in Russian].

    Google Scholar 

  7. G. Bonomi, P. Checchia, M. Errico, and D. Paganol, “Applications of cosmic ray muons,” Prog. Part. Nucl. Phys. 112, 103768 (2020).

    Article  Google Scholar 

  8. L. Trichtchenko, G. Kalugin, J. Armitage, K. Boudjemline, and D. Waller, “Feasibility study of using muon observations for extreme space weather early warning,” Final Report, Geol. Survey of Canada, Open File No. 7451 (Canada, 2013). https://doi.org/10.4095/292841

  9. V. V. Lebedeva, Experimental Optics, 4th ed. (Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  10. V. K. Klochko, Mathematical Methods of Image Recovery and Processing in Radio-Thermal Electronic Systems (RGRTU, Ryazan’, 2009) [in Russian].

  11. A. H. Magharabi, A. F. Aldosari, M. M. Almutairi, and M. I. Altilasi, “Atmospheric effects on secondary cosmic ray muons observed by multi-wire muon detector at a high cutoff rigidity station,” Adv. Space Res. 64, 1629–1637 (2019).

    Article  ADS  Google Scholar 

  12. A. N. Dmitrieva, R. P. Kokoulin, A. A. Petrukhin, and D. A. Timashkov, “Corrections for temperature effect for ground-based muon hodoscopes,” Astropart. Phys. 34, 401–411 (2011).

    Article  ADS  Google Scholar 

  13. V. G. Getmanov, V. V. Shutenko, and I. I. Yashin, “The method for estimating the instrumental function of the uragan muon hodoscope based on Monte-Carlo simulations,” Meas. Tech. 62, 147–153 (2019).

    Article  Google Scholar 

  14. V. G. Getmanov, R. V. Sidorov, M. N. Dobrovolsky, A. N. Dmitrieva, I. I. Yashin, and F. V. Perederin, “Two-dimentional filtering method using systems of local model functions for muonogram analysis,” Pattern Recogn. Image Anal. 30, 460–469 (2020).

    Article  Google Scholar 

  15. Statistic Matlab Toolbox. http://matlab.exponenta.ru.

  16. G. A. Mikhailov and A. V. Voitishek, Numerical Statistical Simulation. Monte-Carlo Method (Yurait, Moscow, 2018) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 17-17-01215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Getmanov.

Additional information

Translated by B. Shubik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getmanov, V.G., Chinkin, V.E., Dobrovolsky, M.N. et al. A Method for Estimating the Normalized Instrument Response Function of the URAGAN Muon Hodoscope. Phys. Part. Nuclei Lett. 18, 115–122 (2021). https://doi.org/10.1134/S1547477121010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121010064

Navigation