Skip to main content
Log in

Energy Levels and Transition Rates for Ti XIV

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Energy levels, wavelengths, oscillator strengths, transition probabilities, line strengths, and lifetimes are calculated for transitions in Ti XIV. The 2s22p5, 2s2p6, 2s22p43l, 2s2p53l, 2p63l, 2s22p44l, and 2s2p54l (l = s, p, d) configurations are used in the calculations and 218 fine-structure levels are obtained using the general-purpose relativistic atomic structure package (GRASP). The results for the electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions from the levels of the 2s22p5, 2s2p6, 2s22p43l, 2s2p53l, and 2p63l (l = s, p, d) configurations to the levels of 2s22p5 and 2s2p6 configurations are presented. Comparisons are made with the available experimental and the other calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. Suckewer, R. Fonck, and E. Hinnov, “Observed magnetic dipole transitions in the ground-state terms of Ti XIV, Ti XV, and Ti XVII,” Phys. Rev. A 21, 924 (1980).

    Article  ADS  Google Scholar 

  2. L. Cohen, U. Feldman, and S. O. Kastner, “Spectra of ions in the fluorine i isoelectronic sequence from Sc XIII to Cu XXI,” J. Opt. Soc. Am. 58, 331 (1968).

    Article  ADS  Google Scholar 

  3. R. D. Chapman and Y. Shadmi, “Calculated term energies and transition probabilities for ions in the fluorine isoelectronic sequence,” J. Opt. Soc. Am. 63, 1440 (1973).

    Article  ADS  Google Scholar 

  4. U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, “Fluorine isoelectronic sequence,” J. Opt. Soc. Am. 63, 1445 (1973).

    Article  ADS  Google Scholar 

  5. B. C. Fawcett, “Wavelengths and classifications of emission lines due to 2s 22p n–2s2p n+1 and 2s2p n–2p n+1 transitions, Z ≤ 28,” At. Data Nucl. Data Tables 16, 135 (1975).

    Article  ADS  Google Scholar 

  6. J. Reader, “2s 22p 5–2s2p 6 transitions in the fluorinelike Ions Sr29+ and Y30+,” Phys. Rev. A 26, 501 (1982).

    Article  ADS  Google Scholar 

  7. B. C. Fawcett, “Calculated wavelengths, oscillator strengths, and energy levels for n = 2-2 and 2-3 transitions in F-like ions Mg IV to Ni XX and for 3-3 and other transitions in Mg IV, Al V, and Si VI,” At. Data Nucl. Data Tables 31, 495 (1984).

    Article  ADS  Google Scholar 

  8. J. Reader, C. M. Brown, J. O. Ekberg, U. Feldman, J. F. Seely, and W. E. Behring, “2s 22p 5–2s2p 6 transitions in fluorinelike Ions from Zr31+ to Sn41+,” J. Opt. Soc. Am. B 3, 1609 (1986).

    Article  ADS  Google Scholar 

  9. E. P. Ivanova and A. V. Glushkov, “Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences,” J. Quant. Spectrosc. Radiat. Transfer 36, 127 (1986).

    Article  ADS  Google Scholar 

  10. H. M. S. Blackford and A. Hibbert, “Transitions in fluorine-like ions,” At. Data Nucl. Data Tables 58, 101 (1994).

    Article  ADS  Google Scholar 

  11. M. Cornille and S. Jacquemot, “Dielectronic spectra for Ne-like ions from F-like low-lying states,” J. X-ray Sci. Technol. 6, 77 (1996).

    Article  Google Scholar 

  12. P. Bengtsson and C. Jupén, “Spectra and term systems of fluorine-like ions,” J. Electron. Spectrosc. Relat. Phenom. 79, 347 (1996).

    Article  Google Scholar 

  13. M. F. Gu, “Energies of 1s 22lq (1 ≤ q ≤ 8) states for Z ≤ 60 with a combined configuration interaction and many-body perturbation theory approach,” At. Data Nucl. Data Tables 89, 267 (2005).

    Article  ADS  Google Scholar 

  14. P. Jönsson, A. Alkauskas, and G. Gaigalas, “Energies and E1, M1, E2 transition rates for states of the 2s 22p 5 and 2s2p 6 configurations in fluorine-like ions between Si VI and W LXVI,” At. Data Nucl. Data Tables 99, 431 (2013).

    Article  ADS  Google Scholar 

  15. I. Khatri, A. Goyal, S. Aggarwal, A. K. Singh, and M. Mohan, “Energy levels and radiative transition rates for Ba XLVIII,” At. Data Nucl. Data Tables 107, 367 (2016).

    Article  ADS  Google Scholar 

  16. K. M. Aggarwal and F. P. Keenan, “Radiative rates for E1, E2, M1, and M2 transitions in F-Like ions with 37 ≤ Z ≤ 53,” At. Data Nucl. Data Tables 109110, 205 (2016).

  17. K. M. Aggarwal and F. P. Keenan, “Radiative rates for E1, E2, M1, and M2 transitions in S-like to F-like tungsten Ions (W LIX to W LXVI),” At. Data Nucl. Data Tables 111–112, 187 (2016).

    Article  ADS  Google Scholar 

  18. C. J. Fontes and H. L. Zhang, “Relativistic distorted-wave collision strengths for Δn = 0 transitions in the 67 Li-like, F-like and Na-like ions with 26 ≤ Z ≤ 92,” At. Data Nucl. Data Tables 113, 293 (2017).

    Article  ADS  Google Scholar 

  19. K. M. Aggarwal, “Radiative rates for E1, E2, M1, and M2 transitions in F-like ions with 55 ≤ Z ≤ 73,” At. Data Nucl. Data Tables 123–124, 168 (2018).

    Article  ADS  Google Scholar 

  20. C. Y. Zhang, R. Si, K. Yao, M. F. Gu, K. Wang, and C. Y. Chen, “Extended calculations of energies, transition rates, and lifetimes for F-Like Kr XXVIII,” J. Quant. Spectrosc. Radiat. Transfer 206, 180 (2018).

    Article  ADS  Google Scholar 

  21. K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Plummer, “GRASP: a general-purpose relativistic atomic structure program,” Comput. Phys. Commun. 55, 425 (1989).

    Article  ADS  Google Scholar 

  22. A. Kramida, Y. Ralchenko, and J. Reader, NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatma El-Sayed or Z. S. Matar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatma El-Sayed, Matar, Z.S. Energy Levels and Transition Rates for Ti XIV. Phys. Part. Nuclei Lett. 16, 713–728 (2019). https://doi.org/10.1134/S1547477119060451

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477119060451

Keywords:

Navigation