Skip to main content
Log in

Constructing Environmental Radon Gas Detector and Measuring Concentration in Residential Buildings

  • METHODS OF PHYSICAL EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Background: From the health physics perspective, radon gas is one of the most dangerous gases in residential and business environments. According to the WHO (World Health Organization), radon gas is considered the second cause of lung cancer in societies after smoking. Methods: In this study, the environmental radon gas has been measured using a built radon gas detector on a specific preamplifier circuit and then the perceived results were compared with an Alpha-Guard detector. Specific activity and output ratio on radon concentration in air were measured on three different floors of a residential building covered by different materials. Results: The results showed a good correlation between the outputs and data gathered by the Alpha-Guard. In underground covered by plaster and cement, the detector responses showed approximately double amounts in comparison with the ground floor. The different covered places revealed dissimilar responses, so that the screened granite had greater amounts by 347 ± 37 Bq/m3. Besides, the minimum response was revealed on the first floor using Alpha-Guard by 47 ± 6 Bq/m3. Results confirmed that on each floor, which has a good ventilation system, the exposure due to the radon isotopes can be immensely reduced. Conclusions: This system can also be used to measure the radon concentration changes in the environment and groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. Korhonen, H. Kokotti, and P. Kalliokoski, “Behavior of radon, radon progenies and particle levels during room depressurization,” Atmos. Environ. 34, 2373–2378 (2000).

    Article  ADS  Google Scholar 

  2. A. Kies, A. Biell, L. Rowlinson, and M. Feider, “Investigation of the dynamics of indoor radon and radon progeny concentration,” Environ. Int. 22, 899–904 (1996).

    Article  Google Scholar 

  3. J. U. Ahmed, P. Stegnar, and F. Steinhäusler, “IAEA-coordinated research programme on radon in the human environment,” Environ. Int. 22, 773–777 (1996).

    Article  Google Scholar 

  4. K. Ghosh, A. Deb, and K. Kumar Patra, “Measurements of alpha radioactivity in arsenic contaminated tubewell drinking water using CR-39 detector,” Radiat. Meas. 38, 19–22 (2004).

    Article  Google Scholar 

  5. Pr. Singh, Pa. Singh, S. Singh, B. K. Sahoo, B. K. Sapra, and B. S. Bajwa, “A study of indoor radon, thoron and their progeny measurement in Tosham region Haryana, India,” J. Radiat. Res. Appl. Sci. 8, 226–233 (2015).

    Article  ADS  Google Scholar 

  6. World Nuclear Association, WNA. http://world-nuclear.org/.

  7. D. C. Thomas, Statistical Methods in Environmental Epidemiology (Oxford Univ. Press, Oxford, UK, 2009).

    Google Scholar 

  8. M. M. Ei-Toony and Aly Has, “Trapping of alpha particles and radon using epoxy/poly vinyl acetate blend foam,” J. Mater. Sci. Eng. 1, 102 (2012).

    Google Scholar 

  9. WHO, Handbook on Indoor Radon: A Public Health Perspective (World Health Organization, 2009).

  10. WHO, “Radon and health,” Fact Sheet No. 291 (World Health Organization, 2014).

  11. United Nation Scientific Committee on the Effects of Atomic Radiation UNSCEAR, Sources and Effect of Ionization Radiation (UN, 2000).

  12. N. Sharma, J. Singh, C. Esakki, and R. M. Tripathi, “A study of the natural radioactivity and radon exhalation rate in some cements used in india and its radiological significance,” J. Radiat. Res. Appl. Sci. 9, 47–56 (2016).

    Article  Google Scholar 

  13. National Research Council, Assessment of the Scientific Information for the Radiation Exposure Screening and Education Program (Natl. Acad. Press, Washington, 2005).

  14. J. Seco, B. Clasie, and M. Partridge, “Review on the characteristics of radiation detectors for dosimetry and imaging,” Phys. Med. Biol. 59, R303–R347 (2014).

    Article  ADS  Google Scholar 

  15. G. E. Knoll, Radiation Detection and Measurement, 4th ed. (Wiley, Antioch, CA, 2010).

    Google Scholar 

  16. J. Chen and M. Deborah, “A study on the thoron sensitivity of radon detectors available to canadians,” J. Radiol. Prot. 32, 419–425 (2012).

    Article  Google Scholar 

  17. S. Tokonami, M. Yang, and T. Sanada, “Contribution from thoron on the response of passive radon detectors,” Health Phys. 80, 612–615 (2001).

    Article  Google Scholar 

  18. K. Hadad, M. R. Hakimdavoud, and M. H. Tilehnoee, “Indoor radon survey in shiraz-iran using developed passive measurement method,” Iran. J. Radiat. Res. 9, 175–182 (2011).

    Google Scholar 

  19. K. Hosokawa, A. Murata, Y. Nakano, Y. Onishi, H. Sekiya, Y. Takeuchi, and S. Tasaka, “Development of a high sensitivity radon detector for purified gases,” J. Phys.: Conf. Ser. 469, 1–4 (2013).

    Google Scholar 

  20. Y. M. Gavrilyuk, A. M. Gangapshev, A. M. Gezhaev, R. A. Etezov, V. V. Kazalov, V. V. Kuzminov, S. I. Panasenko, S. S. Ratkevich, D. A. Tekueva, and S. P. Yakimenko, “High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 801, 27–33 (2015).

    Google Scholar 

  21. Y. Nakano, H. Sekiya, S. Tasaka, Y. Takeuchi, R. A. Wendell, M. Matsubara, and M. Nakahata, “Measurement of radon concentration in Super-Kamiokande’s buffer gas,” Nucl. Instrum. Methods Phys. Res., Sect. A 867, 108–114 (2017).

    Google Scholar 

  22. Z. Wang, Y. Shen, and J. An, “A new method for measuring the response time of the high pressure ionization chamber,” Appl. Radiat. Isot. 70, 1718–1722 (2012).

    Article  Google Scholar 

  23. A. Hartmann, J. Hutsch, F. Krüger, M. Sobiella, H. Wilsenach, and K. Zuber, “Design and performance of an ionisation chamber for the measurement of low alpha-activities,” Nucl. Instrum. Methods Phys. Res., Sect. A 814, 12–18 (2016).

    Google Scholar 

  24. J. S. Nabipour and A. Khorshidi, “Report on correlation between radon outgassing and aftershocks activity along the bam fault in Kerman province of Iran,” Braz. J. Rad. Sci. 5, 1–12 (2017).

    Google Scholar 

  25. A. Khorshidi, M. Ashoor, S. H. Hosseini, and A. Rajaee, “Estimation of fan beam and parallel beam parameters in a wire mesh design,” J. Nucl. Med. Tech. 40, 37–43 (2012).

    Article  Google Scholar 

  26. A. Khorshidi, M. Ashoor, S. H. Hosseini, and A. Rajaee, “Evaluation of collimators' response: round and hexagonal holes in parallel and fan beam,” Prog. Biophys. Mol. Biol. 109, 59–66 (2012).

    Article  Google Scholar 

  27. A. Khorshidi and M. Ashoor, “Modulation transfer function assessment in parallel beam and fan beam collimators with square and cylindrical holes,” Ann. Nucl. Med. 28, 363–370 (2014).

    Article  Google Scholar 

  28. M. Ashoor, A. Asgari, A. Khorshidi, and A. Rezaei, “Evaluation of compton attenuation and photoelectric absorption coefficients by convolution of scattering and primary functions and counts ratio on energy spectra,” Indian J. Nucl. Med. 30, 239–247 (2015).

    Article  Google Scholar 

  29. M. Ashoor and A. Khorshidi, “Evaluation of crystals' morphology on detection efficiency using modern classification criterion and Monte Carlo method in nuclear medicine,” Proc. Natl. Sci. India A (2018, in press). https://doi.org/10.1007/s40010-018-0482-x

    Article  Google Scholar 

  30. F. Ahmadov, O. Abdinov, G. Ahmadov, N. Anfimov, A. Garibov, E. Guliyev, Z. Krumshtein, R. Madatov, A. Olshevski, V. Shvetsov, A. Sadigov, Z. Sadygov, A. Titov, and V. Zhezher, “Alpha particle detector based on micropixel avalanche photodiodes,” Phys. Part. Nucl. Lett. 10, 1265–1267 (2013).

    Article  Google Scholar 

  31. A. Khorshidi, “Gold nanoparticles production using reactor and cyclotron based methods in assessment of 196,198Au production yields by 197Au neutron absorption for therapeutic purposes,” Mater. Sci. Eng. C 68, 449–454 (2016). https://doi.org/10.1016/j.msec.2016.06.018

    Article  Google Scholar 

  32. J. Soltani Nabipour, and A. Khorshidi, “Spectroscopy and optimizing semiconductor detector data under X and γ photons using image processing technique,” J. Med. Imaging Radiat. Oncol. 49, 194–200 (2018).

    Article  Google Scholar 

  33. A. Khorshidi, “Neutron activator design for 99Mo production yield estimation via lead and water moderators in transmutation’s analysis,” Instrum. Exp. Tech. 61, 198–204 (2018).

    Article  Google Scholar 

  34. A. Khorshidi and A. Pazirandeh, “Molybdenum transmutation via 98Mo samples using bismuth/lead neutron moderators,” Europhys. Lett. 123, 12001 (2018). https://doi.org/10.1209/0295-5075/123/12001

    Article  ADS  Google Scholar 

  35. A. Khorshidi, A. Rajaee, M. Ahmadinejad, M. Ghoranneviss, and M. Ettelaee, “Low energy electron generator design and depth dose prediction for micro-superficies tumor treatment purposes,” Phys. Scr. 89, 095001-6 (2014). https://doi.org/10.1088/0031-8949/89/9/095001

    Article  ADS  Google Scholar 

  36. E. V. Samsonov, B. N. Gikal, O. N. Borisov, and I. A. Ivanenko, “Accumulation of spatial charge in the time projection chamber of a multipurpose detector,” Pis’ma Fiz. Elem. Chastits At. Yadra 10 (1) (2013).

  37. A. Khorshidi, “Molybdenum-99 production via lead and bismuth moderators and milli-structure-98Mo samples by indirect production technique using Monte Carlo method,” Phys. Usp. (2019, in press). https://doi.org/10.3367/UFNe.2018.09.038441

    Article  ADS  Google Scholar 

  38. A. Khorshidi, “Accelerator driven neutron source design via beryllium target and 208Pb moderator for boron neutron capture therapy in alternative treatment strategy by Monte Carlo method,” J. Cancer Res. Ther. 13, 456–465 (2017). https://doi.org/10.4103/0973-1482.179180

    Article  Google Scholar 

  39. A. Khorshidi, “Accelerator-based methods in radio-material 99Mo/99mTc production alternatives by Monte Carlo method: the scientific-expedient considerations in nuclear medicine,” J. Multiscale Model. 10, 1930001 (2019). https://doi.org/10.1142/S1756973719300016

    Article  MathSciNet  Google Scholar 

  40. A. Khorshidi, Ghafoori-A. Fard, and M. Sadeghi, “Epithermal neutron formation for boron neutron capture therapy by adiabatic resonance crossing concept,” Int. J. Mod.Phys. E 23, 1–16 (2014). https://doi.org/10.1142/S0218301314500323

    Article  MathSciNet  Google Scholar 

  41. A. Khorshidi, M. Ahmadinejad, and S. H. Hosseini, “Evaluation of a proposed biodegradable 188Re source for brachytherapy application,” Medicine 94, 1–7 (2015). https://doi.org/10.1097/MD.0000000000001098

    Article  Google Scholar 

  42. A. Asgari, M. Ashoor, L. Sarkhosh, A. Khorshidi, and P. Shokrani, “Determination of gamma camera’s calibration factors for quantitation of diagnostic radionuclides in simultaneous scattering and attenuation correction,” Curr. Radiopharm. 12, 29–39 (2019).

    Article  Google Scholar 

  43. S. D. Chambers, S. B. Hong, A. G. Williams, J. Crawford, A. D. Griffiths, and S. J. Park, “Characterizing terrestrial influences of antarctic air masses using radon-222 measurements at King George island,” Atmos. Chem. Phys. 14, 9903-–9916 (2014).

    Article  ADS  Google Scholar 

  44. M. Schubert, A. Paschke, E. Lieberman, and W. C. Burnett, “Air-water partitioning of 222Rn and its dependence on water temperature and salinity,” Environ. Sci. Technol. 46, 3905–3911 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Khorshidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshid Soltani-Nabipour, Khorshidi, A. & Sadeghi, F. Constructing Environmental Radon Gas Detector and Measuring Concentration in Residential Buildings. Phys. Part. Nuclei Lett. 16, 789–795 (2019). https://doi.org/10.1134/S154747711906030X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711906030X

Keywords:

Navigation