Skip to main content
Log in

Recent STAR Spin Results and Spin Measurements at RHIC

  • Physics of Elementary Particles and Atomic Nuclei. Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The STAR experiment provides measurements of single and double-spin asymmetries in longitudinally and transversely polarized p + p collisions at \(\sqrt s \) = 200 and 510 GeV to deepen our understanding on the proton spin structure and dynamics of parton interactions over a wide range of collision energy, momentum and rapidity of the various produced probes. Polarized processes with W± production allow us to study the spin-flavor structure of the proton. Recent results obtained by STAR on the double longitudinal asymmetry, ALL, of pion and jet production at \(\sqrt s \) = 200 and 510 GeV, the single longitudinal, AL, and transverse, AN, asymmetry of W± production at \(\sqrt s \) = 510 GeV are overviewed. STAR results on azimuthal single transverse asymmetry of pion in p + (p, Au) and jet + π± in p + p collisions are discussed. The proposed Forward Calorimeter System (FCS) and Forward Tracking System (FTS) upgrades at STAR would significantly improve the capabilities of existing detectors for measurements of observables such as asymmetries of pion, jet, Drell-Yan pairs produced at forward rapidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Harrison, T. Ludlam, and S. Ozaki, “The relativistic heavy ion collider project: RHIC and its detectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 235–880 (2003).

    Article  ADS  Google Scholar 

  2. I. Alekseev et al., “Polarized proton collider at RHIC,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 392–414 (2003).

    Article  ADS  Google Scholar 

  3. A. Zelenski et al., “Optically pumped polarized H ion source for RHIC spin physics,” Rev. Sci. Instrum. 73, 888 (2002).

    Article  ADS  Google Scholar 

  4. Ya. S. Derbenev et al., “Radiative polarization: obtaining, control, using,” Part. Accel. 8, 115–126 (1978).

    Google Scholar 

  5. I. Nakagawa et al., “p-carbon polarimetry at RHIC,” AIP Conf. Proc. 980, 380–389 (2008).

    Article  ADS  Google Scholar 

  6. A. Zelenski et al., “Absolute polarized H jet polarimeter development, for RHIC,” Nucl. Instrum. Methods Phys. Res., Sect. A 536, 248–254 (2005).

    Article  ADS  Google Scholar 

  7. W. W. MacKay et al., “Commissioning spin rotators in RHIC,” in Proceedings of the 2003 IEEE Particle Accelerator Conference, Ed. by J. Chew, P. Lucas, and S. Webber (IEEE, New York, 2003), pp. 1697–1699.

    Chapter  Google Scholar 

  8. K. H. Ackermann et al. (STAR Collab.), “STAR detector overview,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 624–632 (2003).

    Article  ADS  Google Scholar 

  9. M. Anderson et al. (STAR Collab.), “The star time projection chamber: a unique tool for studying high multiplicity events at RHIC,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 659–678 (2003).

    Article  ADS  Google Scholar 

  10. W. Llope et al. (STAR Collab.), “The large-area timeof- flight upgrade for STAR,” Nucl. Instrum. Methods Phys. Res., Sect. B 241, 306–310 (2005).

    Article  ADS  Google Scholar 

  11. F. Geurts et al., “Performance of the prototype MRPC detector for STAR,” Nucl. Instrum. Methods Phys. Res., Sect. A 533, 60–64 (2004).

    Article  ADS  Google Scholar 

  12. Y. Wang, et al., “Production and quality control of STAR-TOF MRPC,” Nucl. Instrum. Methods Phys. Res., Sect. A 613, 200–206 (2010).

    Article  ADS  Google Scholar 

  13. M. Beddo et al. (STAR Collab.), “The sTAR barrel electromagnetic calorimeter,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 725–739 (2003).

    Article  ADS  Google Scholar 

  14. C. E. Allgower et al. (STAR Collab.), “The STAR endcap electromagnetic calorimeter,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 740–750 (2003).

    Article  ADS  Google Scholar 

  15. L. Adamczyk et al. (STAR Collab.), “Longitudinal and transverse spin asymmetries for inclusive jet production at mid-rapidity in polarized p + p collisions at \(\sqrt s \) = 200 GeV,” Phys. Rev. D 86, 032006 (2012).

    Article  ADS  Google Scholar 

  16. J. Kiryluk (for the STAR Collab.), “Local polarimetry for proton beams with the STAR beam beam counters,” arXiv:hep-ex/0501072.

  17. K. H. Ackermann, et al., (STAR Collab.), “STAR detector overview,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 624–632 (2003).

    Article  ADS  Google Scholar 

  18. W. J. Llope et al. (STAR Collab.), “The STAR vertex position detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 759, 23–28 (2014).

    Article  ADS  Google Scholar 

  19. L. Adamczyk et al. (STAR Collab.), “Precision measurement of the longitudinal double-spin asymmetry for inclusive jet production in polarized proton collisions at \(\sqrt s \) = 200 GeV,” Phys. Rev. Lett. 115, 092002 (2015).

    Article  ADS  Google Scholar 

  20. C. Gagliardi (for STAR Collab.), “Probing the origin of the proton spin at STAR,” in Proceedings of the 6th International Conference on New Frontiers in Physics ICNFP2017, Kolymbari, Greece, Aug. 17–26, 2017. https://indico.cern.ch/event/559774/overview.

  21. E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo, “A first unbiased global determination of polarized PDFs and their uncertainties,” Nucl. Phys. B 887, 276–308 (2014).

    Article  ADS  MATH  Google Scholar 

  22. L. Adamczyk et al. (STAR Collab.), “Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized pp collisions at \(\sqrt s \) = 200 GeV,” Phys. Rev. D 95, 071103 (2017).

    Article  ADS  Google Scholar 

  23. D. de Florian, S. Frixione, A. Signer, and W. Vogelsang, “Next-to-leading order jet cross sections in polarized hadronic collisions,” Nucl. Phys. B 539, 455–476 (1999).

    Article  ADS  Google Scholar 

  24. H. L. Lai et al., “New parton distributions for collider physics,” Phys. Rev. D 82, 074024 (2010).

    Article  ADS  Google Scholar 

  25. D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, “Evidence for polarization of gluons in the proton,” Phys. Rev. Lett. 113, 012001 (2014).

    Article  ADS  Google Scholar 

  26. L. Adamczyk et al. (STAR Collab.), “Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC,” Phys. Rev. Lett. 113, 072301 (2014). s s s

    Article  ADS  Google Scholar 

  27. D. de Florian and W. Vogelsang, “Helicity parton distributions from spin asymmetries in w-boson production at RHIC,” Phys. Rev. D 81, 094020 (2010).

    Article  ADS  Google Scholar 

  28. D. Gunarathne (for the STAR Collab.), “Measurement of W ± single spin asymmetries and W cross section ratio in polarized p + p collisions at \(\sqrt s \) = 510 GeV at STAR,” arXiv:1702.02927.

  29. L. Adamczyk et al. (STAR Collab.), “Measurement of the transverse single-spin asymmetry in p + pW ±/Z 0 at RHIC,” Phys. Rev. Lett. 116, 132301 (2016).

    Article  ADS  Google Scholar 

  30. D. W. Sivers, “Single-spin production asymmetries from the hard scattering of pointlike constituents,” Phys. Rev. D 41, 83–90 (1990).

    Article  ADS  Google Scholar 

  31. D. W. Sivers, “Hard scattering scaling laws for single spin production asymmetries,” Phys. Rev. D 43, 261–263 (1991).

    Article  ADS  Google Scholar 

  32. Z.-B. Kang and J.-W. Qiu, “Testing the time-reversal modified universality of the sivers function,” Phys. Rev. Lett. 103, 172001 (2009).

    Article  ADS  Google Scholar 

  33. S. M. Aybat, A. Prokudin, and T. C. Rogers, “Calculation of transverse-momentum-dependent evolution for sivers transverse single spin asymmetry measurements,” Phys. Rev. Lett. 108, 242003 (2012).

    Article  ADS  Google Scholar 

  34. M. Anselmino, M. Boglione, and S. Melis, “Strategy towards the extraction of the sivers function with transverse momentum dependent evolution,” Phys. Rev. D 86, 014028 (2012).

    Article  ADS  Google Scholar 

  35. P. Sun and F. Yuan, “Transverse momentum dependent evolution: matching semi-inclusive deep inelastic scattering processes to Drell-Yan and W/Z boson production,” Phys. Rev. D 88, 114012 (2013).

    Article  ADS  Google Scholar 

  36. Ch. A. Aidala et al., “The spin structure of the nucleon,” Rev. Mod. Phys. 85, 655–691 (2013).

    Article  ADS  Google Scholar 

  37. V. Barone, F. Bradamante, and A. Martin, “Transverse- spin and transverse-momentum effects in highenergy processes,” Prog. Part. Nucl. Phys. 65, 267–333 (2010).

    Article  ADS  Google Scholar 

  38. Y. Pan (STAR Collab.), “Transverse single spin asymmetries of forward π0 and jet-like events in \(\sqrt s \) = 500 GeV polarized proton collisions at STAR,” Int. J. Mod. Phys. Conf. Ser. 40, 1660037 (2016).

    Article  Google Scholar 

  39. D. L. Adams et al. (E581 and E704 Collabs.), “Comparison of spin asymmetries and cross-sections in π0 production by 200-GeV polarized anti-protons and protons,” Phys. Lett. B 261, 201–206 (1991).

    Article  ADS  Google Scholar 

  40. D. L. Adams et al. (E704 Collab.), “Analyzing power in inclusive pi+ and pi-production at high x(F) with a 200-GeV polarized proton beam,” Phys. Lett. B 264, 462–466 (1991).

    Article  ADS  Google Scholar 

  41. L. Adamczyk et al. (STAR Collab.), “Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at \(\sqrt s \) = 200 GeV,” Phys. Rev. D 89, 012001 (2014).

    Article  ADS  Google Scholar 

  42. U. D’Alesio, F. Murgia, C. Pisano, and P. Taels, “Probing the gluon sivers function in p pJX and p pDX,” Phys. Rev. D 96, 036011 (2017).

    Article  ADS  Google Scholar 

  43. M. M Mondal (for STAR Collab.), “Measurement of the transverse single-spin asymmetries for π0 and jetlike events at forward rapidities at STAR in p + p collisions at \(\sqrt s \) = 500 geV,” arXiv:1407.3715.

  44. S. Heppelman (for STAR Collab.), “Preview from RHIC run 15 pp and pAu forward neutral pion production from transversely polarized protons,” in Proceedings of the 7th International Workshop on Multiple Partonic Interactions at the LHC “MPI@LHC”, Trieste, Italy, Nov. 23–27, 2015, pp. 228–231.

    Google Scholar 

  45. D. Boer, A. Dumitru, and A. Hayashigaki, “Single transverse-spin asymmetries in forward pion production at high energy: incorporating small-x effects in the target,” Phys. Rev. D 74, 074018 (2006).

    Article  ADS  Google Scholar 

  46. D. Boer and A. Dumitru, “Polarized hyperons from pA scattering in the gluon saturation regime,” Phys. Lett. B 556, 33–40 (2003).

    Article  ADS  Google Scholar 

  47. D. Boer, A. Utermann, and E. Wessels, “The saturation scale and its x-dependence from lambda polarization studies,” Phys. Lett. B 671, 91–98 (2009).

    Article  ADS  Google Scholar 

  48. Z.-B. Kang and F. Yuan, “Single spin asymmetry scaling in the forward rapidity region at RHIC,” Phys. Rev. D 84, 034019 (2011).

    Article  ADS  Google Scholar 

  49. Y. V. Kovchegov and M. D. Sievert, “A new mechanism for generating a single transverse spin asymmetry,” Phys. Rev. D 86, 034028 (2012); Phys. Rev. D 86, 079906(E) (2012).

    Article  ADS  Google Scholar 

  50. E. C. Aschenauer et al., “The RHIC SPIN program: achievements and future opportunities,” arXiv:1304.0079.

  51. S. Pisano and M. Radici, “Di-hadron fragmentation and mapping of the nucleon structure,” Eur. Phys. J. A 52, 155 (2016).

    Article  ADS  Google Scholar 

  52. L. Adamczyk et al. (STAR Collab.), “Observation of transverse spin-dependent azimuthal correlations of charged pion pairs in p + p at \(\sqrt s \) = 200 GeV,” Phys. Rev. Lett. 115, 242501 (2015).

    Article  ADS  Google Scholar 

  53. L. Adamczyk et al. (STAR Collab.), “Transverse spindependent azimuthal correlations of charged pion pairs measured in p + p collisions at \(\sqrt s \) = 500 GeV,” arXiv:1710.10215.

  54. M. Radici, A. M. Ricci, A. Bacchetta, and A. Mukherjee, “Exploring universality of transversity in protonproton collisions,” Phys. Rev. D 94, 034012 (2016).

    Article  ADS  Google Scholar 

  55. U. D’Alesio, F. Murgia, and C. Pisano, “Azimuthal asymmetries for hadron distributions inside a jet in hadronic collisions,” Phys. Rev. D 83, 034021 (2011).

    Article  ADS  Google Scholar 

  56. F. Yuan, “Asymmetric azimuthal distribution of hadrons inside a jet from hadron-hadron collisions,” Phys. Rev. Lett. 100, 032003 (2008).

    Article  ADS  Google Scholar 

  57. J. K. Adkins and J. L. Drachenberg (for STAR Collab.), “Azimuthal single-spin asymmetries of charged pions in jets in \(\sqrt s \) = 200 GeV p↑p collisions at STAR,” Int. J. Mod. Phys. Conf. Ser. 40, 166040 (2016).

    Article  Google Scholar 

  58. L. Adamczyk et al. (STAR Collab.), “Azimuthal transverse single-spin asymmetries of inclusive jets and charged pions within jets from polarized-proton collisions at \(\sqrt s \) = 500 GeV,” Phys. Rev. D 97, 032004 (2018).

    Article  ADS  Google Scholar 

  59. Q. Xu, Z. Liang, and E. Sichterman, “Anti-lambda polarization in high energy pp collisions with polarized beam,” Phys. Rev. D 73, 077503 (2006).

    Article  ADS  Google Scholar 

  60. D. Florian, J. Soffer, M. Stratmann, W. Vogelsang, D. de Florian, J. Soffer, M. Stratmann, and W. Vogelsang, “Bounds on transverse spin asymmetries for Λ baryon production in pp collisions at BNL RHIC,” Phys. Lett. B 439, 176–182 (1998).

    Article  ADS  Google Scholar 

  61. A. Bravar et al. (Fermilab E704 Collab.), “Spin transfer in inclusive Λ0 production by transversely polarized protons at 200-GeV/c,” Phys. Rev. Lett. 78, 4003–4006 (1997).

    Article  ADS  Google Scholar 

  62. J. Mei (for STAR Collab.), “Measurement of transverse spin transfer of lambda and anti-lambda hyperons in polarized protonuch collisions at STAR,” PoS(DIS2017), 225 (2018).

  63. STAR Collab., The STAR Forward Calorimeter System and Forward Tracking System. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648.

  64. E. C. Aschenauer et al., “The RHIC cold QCD plan for 2017 to 2023: a portal to EIC,” arXiv:1602.03922.

  65. A. Accardi et al., “Electron ion collider: the next QCD frontier—understanding the glue that binds us all,” arXiv:1212.1701.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tokarev.

Additional information

The article is published in the original.

Presented at the “XVII Workshop on High Energy Spin Physics”, 11–15 September, 2017, Dubna, Russia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokarev, M. Recent STAR Spin Results and Spin Measurements at RHIC. Phys. Part. Nuclei Lett. 15, 478–491 (2018). https://doi.org/10.1134/S1547477118050151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118050151

Keywords

Navigation