Skip to main content
Log in

The compensation of the noise due to angular oscillations of the laser beam in the Precision Laser Inclinometer

  • Methods of Physical Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

An experimental method for the compensation of the noise originated by the laser ray angular oscillations was proposed and experimentally proved for the Precision Laser Inclinometer (PLI). The PLI noise spectral density was reduced by factor 30× and reached 10–8 rad/Hz1/2 level at the frequency of 5 × 10–5 Hz. The angular noise of a laser ray leaving the one-mode optical fiber in the vacuum and in stabilized temperature conditions has been measured. The amplitude of the oscillations for one-day observation reached 0.46 μrad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Batusov, J. Budagov, and M. Lyablin, “A laser sensor of a seismic slope of the Earth surface,” Phys. Part. Nucl. Lett. 10, 43–48 (2013).

    Article  Google Scholar 

  2. J. Budagov et al., “The search for and registration of superweak angular ground motions,” JINR Commun. E18-2013-107 (JINR, Dubna, 2013).

    Google Scholar 

  3. N. Azaryan et al., “The precision laser inclinometer long-term sensitivity in thermo-stabilized conditions,” Report Presented at CLIC Workshop 2015, Jan. 26–30, 2015, CERN, JINR Preprint E13-2015-35 (JINR, Dubna, 2015).

    Google Scholar 

  4. N. Azaryan, V. Batusov, J. Budagov, V. Glagolev, M. Lyablin, G. Trubnikov, G. Shirkov, J.-Ch. Gayde, B. di Girolamo, D. Mergelkuhl, and M. Nessi, “The precision laser inclinometer long-term measurement in thermo-stabilized conditions (first experimental data),” Phys. Part. Nucl. Lett. 12, 532–535 (2015).

    Article  Google Scholar 

  5. O. Iwasinska-Kowalska, “A system for precise laser beam angular steering,” Meas. Syst. 21, 27–36 (2014).

    Google Scholar 

  6. I. Buske et al., “A real–time sub–µrad laser beam tracking system,” Proc. SPIE 6738, 67380–1–9 (2007).

    Article  Google Scholar 

  7. Y. Zhu et al., “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators A 167, 495–501 (2011).

    Article  Google Scholar 

  8. Y. Yin et al., “Preparation and characterization of unimorph actuators based on piezoelectric Pb(Zr0.52Ti0.48)O3 materials,” Sens. Actuators A 171, 332–339 (2011).

    Article  Google Scholar 

  9. L. Germann and J. Braccio, “Fine-steering mirror technology supports 10 nanoradian system,” Opt. Eng. 29, 1351–1359 (1990).

    Article  ADS  Google Scholar 

  10. N. Rijnvelda et al., “A tip/tilt mirror with large dynamic range for the ESO VLT four laser guide star facility,” Proc. SPIE 8125, 812503P1 (2011)

    Google Scholar 

  11. Qingkun Zhou et al., “Goldenberg design of fast steering mirror systems for precision laser beams steering,” in Proceedings of the ROSE 2008, IEEE International Workshop on Robotic and Sensors Environments, Ottawa, Canada, Oct. 17–18, 2008.

  12. R. W. Cochran and R. H. Vassar, “Fast steering mirrors in optical control systems,” SPIE Proc. 1303, 245–251 (1990).

    Article  ADS  Google Scholar 

  13. https://www.physikinstrumente.com/en/products/z-tiptilt-platforms/piezo-platforms/s-325-piezo-z-tip-tiltplatform-300650/#c16797.

  14. D. Dragan, “Hysteresis in piezoelectric and ferroelectric materials,” in The Science of Hysteresis, Ed. by I. Mayergoyz and G. Bertotti (Elsevier, Amsterdam, 2005), Vol. 3, Chap.4.

  15. V. Batusov et al., “Photodetector noise limitations of the laser ray space localization precision,” JINR Preprint E13-2008-90 (JINR, Dubna, 2008).

    Google Scholar 

  16. R. Hedding and R. A. Lewis, “Fast steering mirror design and performance for stabilization and single axis scanning,” Proc. SPIE 1304, 14–24 (2005)

    Article  Google Scholar 

  17. P. Kwee et al., “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).

    Article  ADS  Google Scholar 

  18. G. Stern et al., “Experiments of laser pointing stability in air and in vacuum to validate micrometric positioning sensor,” in Proceedings of 5th International Particle Accelerator Conference IPAC 2014, Dresden, Germany, pp. 1793–1795.

  19. J. Gray, “Laser pointing stability measured by an oblique-incidence optical transmittance difference technique,” Rev. Sci. Instrum. 72, 3714–3717 (2001).

    Article  ADS  Google Scholar 

  20. N. Azaryan et al., “Comparative analysis of earthquakes data recorded by the innovative precision laser inclinometer instruments and the classic hydrostatic level system,” Phys. Part. Nucl. Lett. 14, 480–492 (2017).

    Article  Google Scholar 

  21. J. Budagov, V. Glagolev, M. Lyablin, G. Shirkov, and H. Mainaud Durand, “Air temperature stabilization in the thermally isolated optical laboratory,” Phys. Part. Nucl. Lett. 11, 294–298 (2014).

    Article  Google Scholar 

  22. N. Azaryan et al., “The innovative method of high accuracy interferometric calibration of the precision laser inclinometer,” Phys. Part. Nucl. Lett. 14, 112–122 (2017).

    Article  Google Scholar 

  23. N. Azaryan et al., “The monitoring of the effects of Earth surface inclination with the precision laser inclinometer for high luminosity colliders,” in Proceedings of the RuPAC 2016, 25th Russian Particle Accelerator Conference, Nov. 21–25, 2016, St. Petersburg.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lyablin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azaryan, N., Budagov, J., Lyablin, M. et al. The compensation of the noise due to angular oscillations of the laser beam in the Precision Laser Inclinometer. Phys. Part. Nuclei Lett. 14, 930–938 (2017). https://doi.org/10.1134/S154747711706022X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711706022X

Navigation