Skip to main content
Log in

Spin polarizabilities and characteristics of spin-1 hadrons related to parity nonconservation in the Duffin–Kemmer–Petiau formalism

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Spin polarizabilities of spin-1 particles typical of spin-1/2 hadrons are established within the Duffin–Kemmer–Petiau formalism using the relativistically invariant effective tensor representation of Lagrangians of two-photon interaction with hadrons. New spin polarizabilities of spin-1 particles associated with the presence of tensor polarizabilities are also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Raguza, “Third-order spin polarizabilities of the nucleon: I,” Phys. Rev. D: Part. Fields 47, 3757–3767 (1993).

    Article  ADS  Google Scholar 

  2. S. Raguza, “Third-order spin polarizabilities of the nucleon: II,” Phys. Rev. D: Part. Fields 49, 3157–3159 (1994).

    Article  ADS  Google Scholar 

  3. R. J. Hill, G. Lee, G. Paz, and M. P. Solon, “The NRQED lagrangian at order 1/M4,” Phys. Rev. D: Part. Fields 87, 053017-1–13 (2013).

    Article  ADS  Google Scholar 

  4. B. R. Holstein and S. Scherer, “Hadron polarizabilities,” arXiv:1401.0140v1.

  5. C. E. Carlson and M. Vanderhaeghen, “Constraining off-shell effects using low-energy Compton scattering,” arXiv:1109.3779.

  6. D. Babusci et al., “Low-energy Compton scattering of polarized photons on polarized nucleons,” Phys. Rev. C 58, 1013–1041 (1998).

    Article  ADS  Google Scholar 

  7. J. W. Chen et al., “The polarizability of the deuteron,” Nucl. Phys. A 644, 221–234 (1998).

    Article  ADS  Google Scholar 

  8. J. L. Friar and G. L. Payne, “Deuteron dipole polarizability and sum rules,” Phys. Rev. C 72, 014004-1–014004-6 (2005).

    Article  ADS  Google Scholar 

  9. K. Y. Lin and J. C. Chen, “Forward dispersion relation and low-energy theorems for Compton scattering on spin -1 targets,” J. Phys. G: Nucl. Phys. 1, 394–399 (1975).

    Article  ADS  Google Scholar 

  10. F. Hagelstein, “Sum rules for electromagnetic moments and polarizabilities of spin-1 particles in massive Yang-Mills QED,” Master Thesis (Johannes Gutenber Univ. am Mainz, 2014).

    Google Scholar 

  11. P. F. Bedaque and M. J. Savage, “Parity violation in p Compton scattering,” Phys. Rev. C 62, 018501-1–018501-6 (2000).

    Article  ADS  Google Scholar 

  12. M. Gorchtein and X. Zhang, “Forward Compton scattering with neutral current: constraints from sum rules,” arXiv:nucl-th/1501.0535v1.

  13. F. I. Fedorov, Theory of Gyrothropy (Nauka Tekhnika, Minsk, 1976) [in Russian].

    Google Scholar 

  14. A. Ilyichev, S. Lukashevich, and N. Maksimenko, “Static polarizability vertex and its applications,” arXiv:hep-ph/0611327v1.

  15. Y. Zhang and K. Savvidy, “Proton Compton scattering in a unified proton -Model,” Phys. Rev. C 88, 064614-1–12 (2013).

    Article  ADS  Google Scholar 

  16. N. Krupina and V. Pascalutsa, “Separation of proton polarizabilities with the beam asymmetry of Compton scattering,” Phys. Rev. Lett. 110, 262001-1–4 (2013).

    Article  ADS  Google Scholar 

  17. N. V. Maksimenko and L. G. Moroz, “Deuteron Compton effect,” in Proceedings of the High Energy Physics, JINR Preprint No. 2-6371 (JINR, Dubna, 1972), pp. 67–86.

    Google Scholar 

  18. N. V. Maksimenko, “Covariant determination of polarizability of hadron with spin = 1,” Dokl. Akad. Nauk Belarusi 36, 508–510 (1992).

    Google Scholar 

  19. V. V. Andreev, O. M. Deryuzhkova, and N. V. Maksimenko, “Covariant representation of spin polarizabilities of nucleon,” Probl. Fiz., Mat.Tekh., No. 3 (20), 7–12 (2014).

    MATH  Google Scholar 

  20. E. V. Vakulina and N. V. Maksimenko, “Polarizability of pion in Duffin-Kemmer formalism,” Probl. Fiz., Mat. Tekh., No. 3, 16–18 (2013).

    MATH  Google Scholar 

  21. N. V. Maksimenko, E. V. Vakulina, and S. M. Kuchin, “Spin1 particle polarizability in the Duffin-Kemmer-Petiau formalism,” Phys. Part. Nucl. Lett. 12, 807–812 (2015).

    Article  Google Scholar 

  22. N. V. Maksimenko, E. V. Vakulina, and S. M. Kuchin, “Dipole spin polarizabilities and gyrations of spin-one particles in the Duffin-Kemmer-Petiau formalism,” Russ. Phys. J. 59, 875–883 (2016).

    Article  Google Scholar 

  23. A. A. Bogush, Introduction to Gauge Field Theory of Electroweak Interactions (Nauka Tekhnika, Minsk, 1987) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Vakulina.

Additional information

Original Russian Text © E.V. Vakulina, N.V. Maksimenko, 2017, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakulina, E.V., Maksimenko, N.V. Spin polarizabilities and characteristics of spin-1 hadrons related to parity nonconservation in the Duffin–Kemmer–Petiau formalism. Phys. Part. Nuclei Lett. 14, 713–718 (2017). https://doi.org/10.1134/S1547477117050120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117050120

Navigation