Skip to main content
Log in

Cosmological constraints on the graviton mass in RTG

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The Friedmann cosmological scenario in RTG (without inflation) is considered. The joint maximum-likelihood analysis of data on type Ia supernovae, the shift parameter of microwave radiation, and baryon acoustic oscillations from the Sloan catalogue of red galaxies provided tight fit constraints on the graviton mass and the space curvature in GR. It is demonstrated that the confidence interval for the graviton mass extends indefinitely if the quintessence parameter tends to zero. These conclusions are valid if the present scale factor a 0 >(2)−1/6= 0.89. At a 0 <(2)−1/6, a tight constraint on the graviton mass was derived from these observational data: m < 10–83 g. This implies that terms with the graviton mass may be neglected (with the exception of solutions of the black-hole type) in the gravitational field equations in a broad range of redshifts (0 < z < 1015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Logunov, M. A. Mestvirishvili, and Yu. V. Chugreev, Graviton Mass and Evolution of a Friedmann Universe (Mosk. Gos. Univ., Moscow, 1987) [in Russian]

    MATH  Google Scholar 

  2. A. A. Logunov, M. A. Mestvirishvili, and Yu. V. Chugreev, “Graviton mass and evolution of a friedmann universe,” Sov. J. Theor. Math. Phys. 74, 1 (1987).

    Article  MATH  Google Scholar 

  3. Yu. V. Chugreev, “Mach’s principle for cosmological solutions in relativistic theory of gravity,” Phys. Part. Nucl. Lett. 12, 195 (2015).

    Article  Google Scholar 

  4. M. A. Mestvirishvili and Yu. V. Chugreev, “Friedmann model of evolution of the Universe in the relativistic theory of gravitation,” Theor. Math. Phys. 80, 886–891 (1989).

    Article  MATH  Google Scholar 

  5. A. A. Logunov, Relativistic Theory of Gravity, Horizons in World Physics (Nauka, Moscow, 2012; Nova Science, New York, 1999).

    Google Scholar 

  6. Yu. V. Chugreev, “Cosmological consequences of the relativistic theory of gravitation with massive gravitons,” Theor. Math. Phys. 79, 554–558 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. V. Karabut and Yu. V. Chugreev, “Conditions under which the exterior spherically symmetric solution to the equations of the relativistic theory of gravitation is physical,” Theor. Math. Phys. 84, 1006 (1990).

    Article  MATH  Google Scholar 

  8. Yu. V. Chugreev, “Relativistic collapse of dust ball the in relativistic theory of gravitation,” Sov. J. Part. Nucl. 21, 298 (1990).

    Google Scholar 

  9. Yu. V. Chugreev, “Causality principle in the relativistic theory of gravitation,” Theor. Math. Phys. 88, 997–1002 (1991).

    Article  MathSciNet  Google Scholar 

  10. E. Yu. Emel’yanov and Yu. V. Chugreev, “Evolution of Friedmann Universe in the relativistic theory of gravitation based on spaces of constant curvature,” Theor. Math. Phys. 97, 1409–1420 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, and N. P. Tkachenko, “Graviton mass, quintessence, and oscillatory character of Universe evolution,” Phys. At. Nucl. 67, 1596 (2004)).

    Article  Google Scholar 

  12. Yu. V. Chugreev, “Is the causality principle violated for gravitational waves? Theor. Math. Phys. 138, 293–296 (2004).

  13. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Cosmological constant and Minkowski space,” Phys. Part. Nucl. 38, 291 (2007).

    Article  Google Scholar 

  14. Yu. V. Chugreev, “The vacuum cosmological solution is unique in the relativistic theory of gravity,” Theor. Math. Phys. 161, 1420 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Mukhanov, Physical Foundations of Cosmology (Cambridge Univ. Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  16. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Graviton mass and the total relative mass density Ωtot in the Universe,” Dokl. Phys. 48, 282 (2003).

    Article  ADS  MATH  Google Scholar 

  17. S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, and N. P. Tkachenko, “Evolution of the Universe in the field theory of gravitation,” Phys. Part. Nucl. 36, 529 (2005).

    Google Scholar 

  18. M. A. Mestvirishvili, K. A. Modestov, and Yu. V. Chugreev, “Quintessence scalar field in the relativistic theory of gravity,” Theor. Math. Phys. 152, 1342–1350 (2007). arXiv:grqc/0612105.

    Article  MathSciNet  MATH  Google Scholar 

  19. WMAP Collab., “First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters,” Astrophys. J. Suppl. 148, 175–194 (2003); arXiv:astro-ph:0302209.

    Article  Google Scholar 

  20. SDSS Collab., “Detection of the barion acoustic peak in the large-scale correlation function of SDSS luminous red galaxies,” Astrophys. J. Suppl. 633, 560–574 (2005); arXiv:astro-ph:0501171.

    Article  Google Scholar 

  21. A. A. Logunov, Relativistic Theory of Gravity (Nauka, Moscow, 2006).

    Google Scholar 

  22. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory (Lenand, Moscow, 2015; World Scientific, Singapore, 2011).

    Book  MATH  Google Scholar 

  23. SNfactory Collab., “The Hubble Space Telescope cluster supernova survay: improving the dark energy constraints above z>1 and building an early-type-hosted supernova sample,” Astrophys. J. 746, 85–112 (2012); astro-ph/1105.3470; supernova.lbl.gov/Union.

    Article  ADS  Google Scholar 

  24. WMAP Collab., “Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl. 192, 330–387 (2011); astro-ph/1001.4538.

    Google Scholar 

  25. V. A. Rubakov, “Cosmology,” CERN Yellow Report CERN-2014-003 (2014), pp. 151–196; astro-ph/ 1504.03587.

  26. P. Jetzer and C. Tortora, “Constraints from CMB temperature and other common observational data-sets on variable dark energy models,” Phys. Rev. D: Part. Fields 84, 043517–043527 (2011); astro-ph/1107.4610.

    Article  ADS  Google Scholar 

  27. S. Basilaxos, M. Plionis, M. E. S. Alves, and J. A. S. Lima, “Dynamics and constraints of the massive gravitons dark matter flat cosmologies,” Phys. Rev. D: Part. Fields 83, 103506–103517 (2011); astroph/ 1103.1464.

    Article  ADS  Google Scholar 

  28. SNfactory Collab., “Improved cosmological constraints from new, old and combined supernova datasets,” Astrophys. J. 686, 745–778 (2008); astroph/0804.4142.

    Google Scholar 

  29. WMAP Collab., “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl. 180, 330–376 (2009); astro-ph/0803.0547.

    Article  Google Scholar 

  30. WMAP Collab., “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results,” Astrophys. J. Suppl. 208, 19–51 (2013); astro-ph/1212.5226.

    Article  Google Scholar 

  31. Planck Collab., “Planck 2013 results. XV I. Cosmological parameters,” astro-ph/1303.5076.

  32. Yu. V. Chugreev, “Dark energy and graviton mass in the nearby Universe,” Phys. Part. Nucl. Lett. 13, 38 (2016).

    Article  Google Scholar 

  33. A. S. Goldhaber and M. M. Nieto, “Photon and graviton mass limits,” Rev. Mod. Phys. 82, 939–979 (2010); hep-ph/0809.1003.

    Article  ADS  Google Scholar 

  34. E. M. Lifshits and I. M. Khalatnikov, “Problems of relativistic cosmology,” Sov. Phys. Usp. 6, 495 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  35. V. A. Belinskii, E. M. Lifshits, and I. M. Khalatnikov, “Oscillatory approach to the singular point in relativistic cosmology,” Sov. Phys. Usp. 13, 745 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Chugreev.

Additional information

Original Russian Text © Yu.V. Chugreev, 2017, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugreev, Y.V. Cosmological constraints on the graviton mass in RTG. Phys. Part. Nuclei Lett. 14, 539–549 (2017). https://doi.org/10.1134/S1547477117040070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117040070

Keywords

Navigation