Skip to main content
Log in

Importance of electric fields from ionized nanoparticles for radiation therapy

  • Radiobiology, Ecology and Nuclear Medicine
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A model is presented in which electric fields from ionized particles in a biological tissue enhance the biological effect of ionizing radiation. The model is based on the data on enhancing the gamma radiation effect on biological cells by static electric fields and on estimates of the typical intensities of electric fields from ionized nanoparticles in a biological tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Chithrani, S. Jelveh, F. Jalali, M. van Prooijen, C. Allen, R. G. Bristow, R. P. Hill, and D. A. Jaffray, “Gold nanoparticles as radiation sensitizers in cancer therapy,” Rad. Res. 173, 719–729 (2010).

    Article  Google Scholar 

  2. J. F. Hainfeld, F. A. Dilmanian, Z. Zhong, D. N. Slatkin, J. A. Kalef-Ezra, and H. M. Smilowitz, “Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma,” Phys. Med. Biol. 55, 3045–3049 (2010).

    Article  Google Scholar 

  3. S. J. McMahon, W. B. Hyland, M. F. Muir, J. A. Coulter, S. Jain, K. T. Butterworth, G. Schettino, G. R. Dickson, A. R. Hounsell, J. M. O’Sullivan, K. M. Prise, D. G. Hirst, and F. J. Currell, “Nanodopl-simetric effects of gold nanoparticles in megavoltage radiation therapy,” Radiother. Oncol. 100, 412–416 (2011).

    Article  Google Scholar 

  4. E. Porcel, K. Kobayashi, N. Usami, H. Remita, C. Le Sech, and S. Lacombe, “Photosensitization of plasmid-DNA loaded with platinum nano-particles and irradiated by low energy X-rays,” J. Phys.: Conf. Ser. 261, 012004 (2011).

    Google Scholar 

  5. J.-K. Kim, S.-J. Seo, H.-T. Kim, K.-H. Kim, M.-H. Chung, K.-R. Kim, and S.-Y. Ye, “Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles,” Phys. Med. Biol. 57, 8309–8323 (2012).

    Article  Google Scholar 

  6. E. Amato, A. Italiano, and S. Pergolizzi, “Gold nanoparticles as a sensitising agent in external beam radiotherapy and brachytherapy: a feasibility study through Monte Carlo simulation,” Int. J. Nanotechnol. 10, 1045–1054 (2013).

    Article  ADS  Google Scholar 

  7. C. Sicard-Roselli, E. Brun, M. Gilles, G. Baldacchino, C. Kelsey, H. McQuaid, C. Polin, N. Wardlow, and F. Currell, “A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions,” Small 10, 3338–3346 (2014).

    Article  Google Scholar 

  8. Y. Lin, S. J. McMahon, M. Scarpelli, H. Paganetti, and J. Schuemann, “Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation,” Phys. Med. Biol. 59, 7675–7689 (2014).

    Article  Google Scholar 

  9. F. Vernimmen and M. L. Shmatov, “Gold nanoparticles in stereotactic radiosurgery for cerebral arteriovenous malformations,” J. Biomater. Nanobiotechnol. 6, 204–212 (2015).

    Article  Google Scholar 

  10. M. L. Shmatov, “An expected increase in the efficiency of antiproton cancer therapy with the use of gold nanoparticles,” Phys. Med. Biol. 60, N383–N390 (2015).

    Article  Google Scholar 

  11. T. Wolfe, D. Chatterjee, J. Lee, J. D. Grant, S. Bhattarai, R. Tailor, G. Goodrich, P. Nicolucci, and S. Krishnan, “Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo,” Nanomedicine 11, 1277–1283 (2015).

    Article  Google Scholar 

  12. A. V. Verkhovtsev, A. V. Korol, and A. V. Solov’yov, “Revealing the mechanism of low-energy electron yield enhancement from sensitizing nanoparticles,” Phys. Rev. Lett. 114, 063401 (2015).

    Article  ADS  Google Scholar 

  13. J. Schuemann, R. Berbeco, D. Chithrani, S. Cho, R. Kumar, S. McMahon, S. Sridhar, and S. Krishnan, “Roadmap to clinical use of gold nanoparticles for radiosensitization,” Int. J. Radiat. Oncol. Biol. Phys. 94, 189–205 (2016).

    Article  Google Scholar 

  14. J. D. T. Arruda-Neto, E. C. Friedberg, M. C. Bittencourt-Oliveira, E. Cavalcante-Silva, A. C. G. Schenberg, T. E. Rodrigues, F. Garsia, M. Louvison, C. R. Paula, J. Mesa, M. M. Moron, D. A. Maria, and G. C. Genofre, “Static electric fields interfere in the viability of cells exposed to ionising radiation,” Int. J. Rad. Biol. 85, 314–321 (2009).

    Article  Google Scholar 

  15. J. D. T. Arruda-Neto, E. C. Freidberg, M. C. Bittencourt-Oliveira, H. R. C. Segreto, M. M. Moron, D. A. Maria, L. F. Z. Batista, and A. C. G. Schenberg, “The role played by endogenous and exogenous electric fields in DNA signaling and repair,” DNA Repair 9, 356–357 (2010).

    Article  Google Scholar 

  16. M. Moron, J. Arruda, H. Segreto, D. Maria, L. Batista, and G. Genofre, “Cancer cells jointly exposed to gamma-radiation and electric field develop s-phase arrest,” WebmedCentral Biol. 2 (9), WMC001154 (2011).

    Google Scholar 

  17. J. D. T. Arruda-Neto, “Sensing of DNA damage, instantly activation of repairing proteins and radio sensitizers -a biophysical model,” MOJ Proteomics Bioinform. 2 (5), 00063 (2015).

    Google Scholar 

  18. N. I. Koshkin and M. G. Shirkevich, Handbook of Elementary Physics, 9th ed. (Nauka, Moscow, 1982; Central Books, New Ed, 1977).

    Google Scholar 

  19. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, London, 1963; Mir, Moscow, 1977), Vol.2.

  20. M. L. Shmatov, “About the optimum definition of the dose enhancement factor describing the local effect of the nanoparticles in proton therapy,” Preprint No. 1812 (Ioffe Inst., St. Petersburg, 2015).

    Google Scholar 

  21. G. B. Goodman, L. D. Skarsgard, G. B. Thompson, R. Harrison, G. K. Y. Lam, and C. Lugate, “Pion therapy at TRIUMF. Treatment results for astrocytoma grades 3 and 4: a pilot study,” Radiother. Oncol. 17, 21–28 (1990).

    Article  Google Scholar 

  22. H. Suit, “The Gray lecture 2001: coming technical advances in radiation oncology,” Int. J. Rad. Oncol. Biol. Phys. 53, 798–809 (2002).

    Article  Google Scholar 

  23. V. S. Khoroshkov, “Radiation beam therapy evolution: from X-rays to hadrons,” Phys. At. Nucl. 69, 1724 (2006).

    Article  Google Scholar 

  24. I. B. Vendik, O. G. Vendik, D. S. Kozlov, I. V. Munina, V. V. Pleskachev, A. S. Rusakov, and P. A. Tural’chuk, “Wireless monitoring of the biological object state at microwave frequencies: a review,” Tech. Phys. 61, 1 (2016).

    Article  Google Scholar 

  25. D. V. Sivukhin, General Course of Physics, Vol. 3: Electricity (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  26. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  27. R. A. Smith, Semiconductors, 2nd ed. (Cambridge Univ., Cambridge, 1978; Mir, Moscow, 1982).

    MATH  Google Scholar 

  28. Yu. P. Raizer, Gas Discharge Physics (Intellekt, Dolgoprudnyi, 2009; Springer, Berlin, 1991).

    Google Scholar 

  29. I. T. Yakubov, “Nonideal plasma,” in Physical Encyclopedy, Ed. by A. M. Prokhorov (Bol. Ros. Entsiklopediya, Moscow, 1992), Vol. 3, pp. 252–254 [in Russian].

    Google Scholar 

  30. Z. Liu, C. Tan, X. Guo, Y.-T. Kao, J. Li, L. Wang, A. Sancar, and D. Zhong, “Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase,” Proc. Natl. Acad. Sci. USA 108, 14831–14836 (2011).

    Article  ADS  Google Scholar 

  31. A. Stuchebrukhov, “Watching DNA repair in real time,” Proc. Natl. Acad. Sci. USA 108, 19445–19446 (2011).

    Article  ADS  Google Scholar 

  32. A. H. Samuel and J. L. Magee, “Theory of radiation chemistry. II. Track effects in radiolysis of water,” J. Chem. Phys. 21, 1080–1087 (1953).

    Article  ADS  Google Scholar 

  33. Ch. Kittel, Elementary Solid State Physics: a Short Course (Wiley & Sons, Inc., New York–London, 1962; Nauka, Moscow, 1965).

    Google Scholar 

  34. B. I. Sedunov and D. A. Frank-Kamenetskii, “Dielectric constants of biological objects,” Sov. Phys. Usp. 6, 279 (1963).

    Article  ADS  Google Scholar 

  35. G. G. Malenkov, “Water,” in Physical Encyclopedy, Ed. by A. M. Prokhorov (Sov. Entsiklopediya, Moscow, 1988), Vol. 1, pp. 294–297 [in Russian].

    Google Scholar 

  36. L. A. Artsimovich, Elementary Plasma Physics (Moscow, Atomizdat, 1969; Blaisdell, New York, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Shmatov.

Additional information

Original Russian Text © M.L. Shmatov, 2017, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmatov, M.L. Importance of electric fields from ionized nanoparticles for radiation therapy. Phys. Part. Nuclei Lett. 14, 533–536 (2017). https://doi.org/10.1134/S1547477117030153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117030153

Navigation