Skip to main content
Log in

Hadron rapidity spectra within a hybrid model

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Landau, “On the multiparticle production in highenergy collisions,” Izv. Akad. Nauk, Ser. Fiz. 17, 5164 (1953).

    Google Scholar 

  2. P. F. Kolb and U. W. Heinz, “Hydrodynamic description of ultrarelativistic heavy ion collisions,” in Quark Gluon Plasma, Ed. by R. C. Hwa et al. (World Scientific, Singapore, 2003), pp. 634–714; arXiv:nucl-th/0305084.

    Google Scholar 

  3. U. W. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions,” Ann. Rev. Nucl. Part. Sci. 63, 123 (2013); arXiv:1301.2826.

    Article  ADS  Google Scholar 

  4. C. Gale, S. Jeon, and B. Schenke, “Hydrodynamic modeling of heavy-ion collisions,” Int. J. Mod. Phys. A 28, 1340011 (2013).

    Article  ADS  Google Scholar 

  5. S. Jeon and U. Heinz, “Introduction to hydrodynamics,” arXiv:1503.03931.

  6. R. Derradi de Souza, T. Koide, and T. Kodama, “Hydrodynamic approaches in relativistic heavy ion reactions,” Prog. Part. Nucl. Phys. 86, 35 (2016); arXiv:1506.03863.

    Article  ADS  Google Scholar 

  7. A. N. Sissakian, A. S. Sorin, and V. D. Toneev, Cong. Proc. C 421, 060726 (2006); arXiv:nucl-th/0608032.

    Google Scholar 

  8. B. Friman, C. Hohne, J. Knoll, S. Leupold, J. Randrup, R. Rapp, and P. Senger, Lect. Notes Phys. 814, 1 (2011).

    Article  ADS  Google Scholar 

  9. Yu. B. Ivanov, V. N. Russkikh, and V. D. Toneev, “Relativistic heavy-ion collisions within three-fluid hydrodynamics: hadronic scenario,” Phys. Rev. C 73, 044904 (2006); arXiv:nucl-th/0503088.

    Article  ADS  Google Scholar 

  10. W. Ehehalt and W. Cassing, “Relativistic transport approach for nucleus-nucleus collisions from SIS to SPS energies,” Nucl. Phys. A 602, 449 (1996)

    Article  ADS  Google Scholar 

  11. J. Geiss, W. Cassing, and C. Greiner, “Strangeness production in the HSD transport approach from SIS to SPS energies,” Nucl. Phys. A 644, 107 (1998)

    Article  ADS  Google Scholar 

  12. W. Cassing and E. L. Bratkovskaya, “Hadronic and electromagnetic probes of hot and dense nuclear matter,” Phys. Rep. 308, 65 (1999).

    Article  ADS  Google Scholar 

  13. W. Cassing and E. L. Bratkovskaya, “Parton hadron string dynamics: an off-shell transport approach for relativistic energies,” Nucl. Phys. A 831, 215 (2009); “Parton transport and hadronization from the dynamical quasiparticle point of view,” Phys. Rev. C 78, 034919 (2008).

    Article  ADS  Google Scholar 

  14. V. V. Skokov and V. D. Toneev, “Hydrodynamics of an expanding fireball,” Phys. At. Nucl. 70, 109 (2007).

    Article  Google Scholar 

  15. H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H. Stöcker, “Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage,” Phys. Rev. C 78, 044901 (2008).

    Article  ADS  Google Scholar 

  16. L. D. Landau and E. M. Lifschitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Addison-Wesley, Reading, MA, 1959).

    Google Scholar 

  17. D. H. Rischke, S. Bernard, and J. A. Maruhn, “Relativistic hydrodynamics for heavy-ion collisions. I. General aspects and expansion into vacuum,” Nucl. Phys. A 595, 346 (1995).

    Article  ADS  Google Scholar 

  18. J. P. Boris and D. L. Book, “Flux-corrected transport I. SHASTA, a fluid transport algorithm that works,” J. Comp. Phys. A 11, 38 (1973)

    Article  ADS  MATH  Google Scholar 

  19. D. L. Book, J. P. Boris, and K. Hain, “Flux-corrected transport II: Generalizations of the method,” J. Comp. Phys. A 18, 248 (1975).

    Article  ADS  MATH  Google Scholar 

  20. A. V. Merdeev, “Hydrodynamic modelling of the quark-hadron phase transition,” PhD thesis (Moscow, 2011); L. M. Satarov, private communication.

    Google Scholar 

  21. L. M. Satarov, M. N. Dmitriev, and I. N. Mishustin, “Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter,” Phys. At. Nucl. 72, 1390 (2009).

    Article  Google Scholar 

  22. K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  23. P. Huovinen and H. Petersen, “Particlization in hybrid models,” Eur. Phys. J. A 48, 171 (2012).

    Article  ADS  Google Scholar 

  24. L. M. Satarov, I. N. Mishustin, and A. V. Merdeev, “1+1 dimensional hydrodynamics for high energy heavy ion collisions,” Phys. At. Nucl. 70, 1773 (2007); arXiv:hep-ph/0611099.

    Article  Google Scholar 

  25. N. S. Amelin, R. Lednicky, T. A. Pocheptsov, I. P. Lokhtin, L. V. Malinina, A. M. Snigirev, Iu. A. Karpenko, and Yu. M. Sinyukov, “Fast hadron freeze-out generator,” Phys. Rev. C 74, 064901 (2006).

    Article  ADS  Google Scholar 

  26. F. Cooper and G. Frye, “Single-particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production,” Phys. Rev. D: Part. Fields 10, 186 (1974).

    Article  ADS  Google Scholar 

  27. G. S. F. Stephans, “Low energy physics with RHIC,” in Proceedings of the RHIC/AGS Annual Users’ Meeting 2007, Brookhaven, June 18–22, 2007. www.bnl.gov/rhic_ags/users_meeting/Past_Meetings/2007/Agenda/Fri/Stephans_ RHIC_Users_2007.pdf.

    Google Scholar 

  28. W. Cassing, A. Palmese, P. Moreau, and E. L. Bratkovskaya, “Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density,” arXiv:1510.04120.

  29. Iu. A. Karpenko, P. Huovinen, H. Petersen, and M. Bleicher, “Estimation of the shear viscosity at finite net-baryon density from A+A collision data at √sNN= 7.7–200 GeV,” Phys. Rev. C 91, 064901 (2015); arXiv:1502.01978.

    Article  ADS  Google Scholar 

  30. T. Anticic et al., “Centrality dependence of proton and antiproton spectra in Pb+Pb collisions at 40A GV and 158A GeV measured at the CERN super proton synchrotron,” Phys. Rev. C 83, 014901 (2011).

    Article  ADS  Google Scholar 

  31. T. Anticic et al., “Energy and centrality dependence of deuteron and proton production in Pb+Pb collisions at relativistic energies,” Phys. Rev. C 69, 024902 (2004).

    Article  ADS  Google Scholar 

  32. S. V. Afanasiev et al., “Energy dependence of pion and kaon production in central Pb+Pb collisions,” Phys. Rev. C 66, 054902 (2002).

    Article  ADS  Google Scholar 

  33. J. Sollfrank, P. Huovinen, M. Kataja, P. V. Ruuskanen, M. Prakash, and R. Venugopalan, “Hydrodynamical description of 200A GeV/c S+Au collisions: hadron and electromagnetic spectra,” Phys. Rev. C 55, 392 (1997); arXiv:nucl-ts/9607029.

    Article  ADS  Google Scholar 

  34. L. Ahle et al., “Particle production at high baryon density in central Au+Au reactions at 11.6A GeV/c,” Phys. Rev. C 57, R466 (1988).

    Article  ADS  Google Scholar 

  35. J. Barrette et al., “Proton and pion production in Au+Au collisions at 10.8A GeV/c,” Phys. Rev. C 62, 024901 (2000).

    Article  ADS  Google Scholar 

  36. B. B. Back et al., “Baryon rapidity loss in relativistic Au+Au collisions,” Phys. Rev. Lett. 86, 1970 (2001).

    Article  ADS  Google Scholar 

  37. J. L. Klay et al., “Charged pion production in 2A to 8A GeV central Au+Au collisions,” Phys. Rev. C 68, 054905 (2003).

    Article  ADS  Google Scholar 

  38. L. Ahle et al., “Simultaneous multiplicity and forward energy characterization of particle spectra in Au+Au collisions at 11.6A GeV/c,” Phys. Rev. C 59, 2173 (1999).

    Article  ADS  Google Scholar 

  39. L. Ahle, et al., “Particle production in Au+Au collisions from BNL E866,” Nucl. Phys. A 610, 139 (1996).

    Article  ADS  Google Scholar 

  40. J. L. Klay et al., “Longitudinal flow of protons from 2‒8 AGeV central Au+Au collisions,” Phys. Rev. Lett. 88, 102301 (2002).

    Article  ADS  Google Scholar 

  41. T. Hirano, J. Phys. G: Nucl. Part. Phys. 30, 845 (2004).

    Article  ADS  Google Scholar 

  42. A. Andronic, P. Braun-Munzinger, and J. Stachel, “Hadron production in central nucleus nucleus collisions at chemical freeze-out,” Nucl. Phys. A 772, 167 (2006).

    Article  ADS  Google Scholar 

  43. Yu. B. Ivanov, “Alternative scenarios of relativistic heavy-ion collisions: I. Baryon stopping,” Phys. Rev. C 87, 064904 (2013); arXiv:1302.5766.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Khvorostukhin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khvorostukhin, A.S., Toneev, V.D. Hadron rapidity spectra within a hybrid model. Phys. Part. Nuclei Lett. 14, 9–17 (2017). https://doi.org/10.1134/S1547477117010162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117010162

Keywords

Navigation