Skip to main content
Log in

Precision solution of the Schrödinger equation with Coulomb and linear confining potentials in momentum space

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

It is shown that the Schrödinger equation in the momentum representation with linear confining potential and Coulomb and Cornell potentials for the states with zero orbital angular momentum can be solved with high accuracy (far superior to other methods) using special quadrature formulas for singular integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Bete and E. E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms (Springer, Göttingen, Heidelberg, Berlin, 1957), p. 1242.

    Book  Google Scholar 

  2. D. Eyre and J. P. Vary, “Solving momentum space integral equations for quarkonia spectra with confining potentials,” Phys. Rev. D 34, 3467–3471 (1986).

    Article  ADS  Google Scholar 

  3. W. Lucha, H. Rupprecht, and F. F. Schoberl, “Relativistic treatment of fermion anti-fermion bound states,” Phys. Rev. D 44, 242–249 (1991).

    Article  ADS  Google Scholar 

  4. J. W. Norbury, D. E. Kahana, and K. Maung, “Confining potential in momentum space,” Can. J. Phys. 70, 86–89 (1992).

    Article  ADS  Google Scholar 

  5. J. W. Norbury, K. M. Maung, and D. E. Kahana, “Numerical tests of the Landé subtraction method for the coulomb potential in momentum space,” Phys. Rev. A 50, 2075–2079 (1994).

    Article  ADS  Google Scholar 

  6. A. Tang and J. W. Norbury, “The Nyström plus correction method for solving bound state equations in momentum space,” Phys. Rev. E 63, 066703 (2001).

    Article  ADS  Google Scholar 

  7. A. Deloff, “Quarkonium bound-state problem in momentum space revisited,” Ann. Phys. 322, 2315–2326 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. D. Kang and E. Won, “Precise numerical solutions of potential problems using Crank-Nicholson method,” J. Comput. Phys. 227, 2970–2976 (2008).

    Article  ADS  MATH  Google Scholar 

  9. T. Udem et al., “Phase-coherent measurement of the hydrogen 1S–2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646–2649 (1997).

    Article  ADS  Google Scholar 

  10. W. Liu et al., “High precision measurements of the ground state hyperfine structure interval of muonium and of the muon magnetic moment,” Phys. Rev. Lett. 82, 711–714 (1999).

    Article  ADS  Google Scholar 

  11. S. Bielefeld, J. Ihmels, and H.-C. Pauli, “On technically solving an effective QCD hamiltonian,” arXiv:hep-ph/9904241 (1999).

    Google Scholar 

  12. C. Savkli and F. Gross, “Quark-antiquark bound states in the relativistic spectator formalism,” Phys. Rev. C 63, 035208 (2001).

    Article  ADS  Google Scholar 

  13. M. Iersel, C. F. M. van Burgh, and B. L. G. van der Bakker, “Techniques for solving bound state problems,” arXiv:hep-ph/0010243 (2000).

    Google Scholar 

  14. J. W. Norbury, D. E. Kahana, and K. M. Maung, “Confining potential in momentum space,” Canad. J. Phys. 70, 86–89 (1992).

    Article  ADS  Google Scholar 

  15. H. Hersbach, “Relativistic linear potential in momentum space,” Phys. Rev. D 47, 3027–3033 (1993).

    Article  ADS  Google Scholar 

  16. J.-K. Chen, “Extended Simpson’s rule for the screened Cornell potential in momentum space,” Phys. Rev. D 86, 036013 (2012).

    Article  ADS  Google Scholar 

  17. S. Leitão et al., “Linear confinement in momentum space: singularity-free bound-state equations,” Phys. Rev. D 90, 096003 (2014).

    Article  ADS  Google Scholar 

  18. Y. R. Kwon and F. Tabakin, “Hadronic atoms in momentum space,” Phys. Rev. C 18, 932–943 (1978).

    Article  ADS  Google Scholar 

  19. I. A. Ivanov and J. Mitroy, “Treatment of the Coulomb singularity in momentum space calculations,” Comput. Phys. Commun. 134, 317–320 (2001).

    Article  ADS  MATH  Google Scholar 

  20. Y.-S. Chan, A. C. Fannjiang, and G. H. Paulino, “Integral equations with hypersingular Kernels—theory and applications to fracture mechanics,” Int. J. Eng. Sci. 41, 683–720 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. L. Bichi, Z. K. Eshkuvatov, and N. M. A. Nik Long, “An automatic quadrature schemes and error estimates for semibounded weighted Hadamard type hypersingular integrals,” Abstr. Appl. Anal. 2014, 1–13 (2014).

    Article  MathSciNet  Google Scholar 

  22. Z. Chen and Y. F. Zhou, “A new method for solving hypersingular integral equations of the first kind,” Appl. Math. Lett. 24, 636–641 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. A. Korneichuk, “Quadrature formulae for singular integrals,” Zh. Vychisl. Mat. Mat. Fiz. 4 (Suppl.), 64–74 (1964).

    MathSciNet  Google Scholar 

  24. G. N. Pykhteev, “Some interpolation quadrature formulas for the evaluation of Caushy type integrals and singular integrals of special form,” USSR Comput. Math. Math. Phys. 11 (6), 292 (1971).

    Article  MATH  Google Scholar 

  25. M. A. Sheshko, “Convergence of quadrature processes for a singular integral,” Izv. Vyssh. Uchebn. Zaved., Mat. 12, 108–118 (1976).

    MathSciNet  MATH  Google Scholar 

  26. A. Deloff, “Semi-spectral Chebyshev method in quantum mechanics,” Ann. Phys. 322, 1373–1419 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. C. Kaya and F. Erdogan, “On the solution of integral equations with strongly singular kernels,” Q. Appl. Math. 45, 105–122 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. A. Golberg, Numerical Solution of Integral Equations Mathematical Concepts and Methods in Science and Engineering (Plenum, New York, London, 1990).

    Book  Google Scholar 

  29. J. C. Mason and E. Venturino, “A Chebyshev polynomial method for line integrals with singularities,” Adv. Comput. Math. 10, 187–208 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  30. C.-Y. Hui and D. Shia, “Evaluations of hypersingular integrals using gaussian quadrature,” Int. J. Numer. Methods Eng. 44, 205–214 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  31. H. R. Kutt, On the Numerical Evaluation of Finite Part Integrals Involving an Algebraic Singularity (Natl. Res. Inst. Math. Sci., Pretoria, 1975).

    MATH  Google Scholar 

  32. J. C. Mason and D. C. Handscomb, Chebyshev Polynomials (Chapman and Hall/CRC, Boca Raton, FL, 2002).

    Book  MATH  Google Scholar 

  33. St. Wolfram, The Mathematica Book, Vers. 4 (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  34. J. K. Chen, “Nyström method for the Coulomb and screened Coulomb potentials,” Few-Body Syst. 54, 2081–2095 (2013).

    Article  ADS  Google Scholar 

  35. L. P. Fulcher, Z. Chen, and K. C. Yeong, “Energies of quark–anti-quark systems, the Cornell potential, and the spinless Salpeter equation,” Phys. Rev. D 47, 4122–4132 (1993).

    Article  ADS  Google Scholar 

  36. V. V. Andreev and E. S. Chebotareva, “The search of critical parameter values for semirelativistic Coulomb problem,” Probl. Fiz., Mat. Tekh., No. 4 (13), 7–9 (2012).

    MATH  Google Scholar 

  37. J. K. Chen, “Spectral method for the Cornell and screened Cornell potentials in momentum space,” Phys. Rev. D: Part. Fields 88, 076006 (2013); Phys. Rev. D 89, 099904(E) (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Andreev.

Additional information

Original Russian Text © V.V. Andreev, 2017, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, V.V. Precision solution of the Schrödinger equation with Coulomb and linear confining potentials in momentum space. Phys. Part. Nuclei Lett. 14, 66–76 (2017). https://doi.org/10.1134/S1547477117010034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117010034

Navigation