Skip to main content
Log in

Neutron radiography and tomography facility at IBR-2 reactor

  • Methods of Physical Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

An experimental station for investigations using neutron radiography and tomography was developed at the upgraded high-flux pulsed IBR-2 reactor. The 20 × 20 cm neutron beam is formed by the system of collimators with the characteristic parameter L/D varying from 200 to 2000. The detector system is based on a 6LiF/ZnS scintillation screen; images are recorded using a high-sensitivity video camera based on the high-resolution CCD matrix. The results of the first neutron radiography and tomography experiments at the developed facility are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Vontobel, E. H. Lehmann, R. Hassanein, and G. Frei, “Neutron tomography: method and applications,” Phys. B: Condens. Matter 385–386, 475–480 (2006).

    Article  Google Scholar 

  2. E. H. Lehmann, S. Peetermans, and B. Betz, “Instrumentation in neutron imaging — a world-wide overview,” Neutron News 26, 6–10 (2015).

    Article  Google Scholar 

  3. E. Perfect, C.-L. Cheng, M. Kang, H. Z. Bilheux, J. M. Lamanna, M. J. Gragg, and D. M. Wright, “Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: a review,” Earth-Sci. Rev. 129, 120–135 (2014).

    Article  ADS  Google Scholar 

  4. Radiography of Cultural Material, Ed. by A. Middleton, J. Tum, and J. Lang, 2nd ed. (Routledge, London, 2005).

  5. Neutron Imaging and Applications: A Reference for the Imaging Community, Ed. by I. S. Anderson, R. L. McGreevy, and H. Z. Bilheux (Springer, New York, 2009).

  6. Practical Neutron Radiography, Ed. by J. C. Domanus (Kluwer Academic, Netherlands, 1992).

  7. E. H. Lehmann and D. Ridikas, “Status of neutron activities in a worldwide context,” in Proceedings of the 10th World Conference on Neutron Radiography, Grindelwald, Switzerland, 2014, p. 29.

    Google Scholar 

  8. D. P. Kozlenko, “Neutron imaging facility at IBR-2 high flux pulsed reactor: first results,” in Proceedings of the 10th World Conference on Neutron Radiography, Grindelwald, Switzerland, 2014, p. 27.

    Google Scholar 

  9. E. H. Lehmann, G. Frei, P. Vontobel, L. Josic, N. Kardjilov, A. Hilger, W. Kockelmann, and A. Steuwer, “The energy-selective option in neutron imaging,” Nucl. Instrum. Methods Phys. Res. A 603, 429–438 (2009).

    Article  ADS  Google Scholar 

  10. W. Kockelmann, G. Frei, E. H. Lehmann, P. Vontobel, and J. R. Santisteban, “Energy-selective neutron transmission imaging at a pulsed source,” Nucl. Instrum. Methods Phys. Res. A 578, 421–434 (2007).

    Article  ADS  Google Scholar 

  11. F. Grunauer, “Image reconstruction and multiple hole apertures in neutron radiography at FRM-II,” Nucl. Instrum. Methods Phys. Res. A 566, 654–666 (2006).

    Article  ADS  Google Scholar 

  12. M. Dinca and M. Pavelescu, “Calculus for a neutron imaging system based on a CCD camera,” Roman. J. Phys. 51, 363–370 (2006).

    Google Scholar 

  13. S. H. Williams, A. Hilger, N. Kardjilov, I. Manke, M. Strobl, P. A. Douissard, T. Martin, H. Riesemeier, and J. Banhart, “Detection system for microimaging with neutrons,” J. Instrum. 7, 02014 (2012).

    Article  Google Scholar 

  14. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH image to imageJ: 25 years of image analysis,” Nature Methods 9, 671–675 (2012).

    Article  Google Scholar 

  15. R. C. Chen, D. Dreossi, L. Mancini, R. Menk, L. Rigon, T. Q. Xiao, and R. Longo, “PITRE: software for phase-sensitive x-ray image processing and tomography reconstruction,” J. Synchrotr. Rad. 19, 836–845 (2012).

    Article  Google Scholar 

  16. G. Bokuchava, I. Papushkin, A. Venter, and P. Petrov, “Residual stress studies in electron beam welding using neutron diffraction,” J. Mater. Sci. Technol. 22, 3–11 (2014).

    Google Scholar 

  17. G. Bokuchava, I. Papushkin, and P. Petrov, “Residual stress study by neutron diffraction in the charpy specimens reconstructed by various welding methods,” Compt. Rend. Acad. Bulg. Sci. 67, 763–768 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Kichanov.

Additional information

Original Russian Text © D.P. Kozlenko, S.E. Kichanov, E.V. Lukin, A.V. Rutkauskas, A.V. Belushkin, G.D. Bokuchava, B.N. Savenko, 2016, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlenko, D.P., Kichanov, S.E., Lukin, E.V. et al. Neutron radiography and tomography facility at IBR-2 reactor. Phys. Part. Nuclei Lett. 13, 346–351 (2016). https://doi.org/10.1134/S1547477116030146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477116030146

Keywords

Navigation