Skip to main content
Log in

Expanding (3 + 1)-dimensional universe from the IIB matrix model

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We show that (3 + 1)-dimensional expanding universe emerges in the IIB matrix model, which is conjectured to be a nonperturbative formulation of superstring theory. We also discuss how the Standard Model particles appear in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Liu, G. W. Moore, and N. Seiberg, “Strings in time dependent orbifolds,” JHEP 10–031, 1–26 (2002).

    Google Scholar 

  2. A. Lawrence, “On the instability of 3-D null singularities,” JHEP 10–019, 1–6 (2002).

    Google Scholar 

  3. G. T. Horowitz and J. Polchinski, “Instability of space-like and null orbifold singularities,” Phys. Rev. D 66–103512, 1–7 (2002).

    ADS  MathSciNet  Google Scholar 

  4. M. Berkooz et al., “Comments on cosmological singularities in string theory,” JHEP 03–031, 1–34 (2003).

    Google Scholar 

  5. N. Ishibashi et al., “A large-N reduced model as superstring,” Nucl. Phys. B 498, 467–491 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. M. Fukuma et al., “String field theory from IIB matrix model,” Nucl. Phys. B 510, 158–174 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. Q. Krauth et al., “Monte Carlo approach to M theory,” Phys. Lett. B 431, 31–41 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Austing and J. F. Wheater, “Convergent Yang-Mills Matrix Theories,” JHEP 04–019, 1–20 (2001).

    ADS  Google Scholar 

  9. J. Nishimura, T. Okubo, and F. Sugino, “Systematic study of the SO(10) symmetry breaking vacua in the matrix model for type IIB superstrings,” JHEP 10–135, 1–33 (2011).

    Google Scholar 

  10. K. N. Anagnostopoulos, T. Azuma, and J. Nishimura, “Monte Carlo studies of the spontaneous rotational symmetry breaking in dimensionally reduced super Yang-Mills models,” JHEP 11-009, 1–27 (2013).

    Google Scholar 

  11. S. -W. Kim, J. Nishimura, and A. Tsuchiya, “Expanding (3 + 1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9 + 1)-dimensions,” Phys. Rev. Lett. 108-01160, 1–5 (2012).

    Google Scholar 

  12. H. Aoki, S. Iso, and T. Suyama, “Orbifold matrix model,” Nucl. Phys. B 634, 71–89 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. Chatzistavrakidis, H. Steinacker, and G. Zoupanos, “Orbifolds, fuzzy spheres and chiral fermions,” JHEP 05-100, 1–26 (2010).

    Google Scholar 

  14. A. Chatzistavrakidis, H. Steinacker, and G. Zoupanos, “Orbifold matrix models and fuzzy extra dimensions,” PoS CORFU 047, 1–19 (2011).

    Google Scholar 

  15. H. Aoki, “Chiral fermions and the standard model from the matrix model compactified on a torus,” Prog. Theor. Phys. 125, 521–536 (2011).

    Article  ADS  MATH  Google Scholar 

  16. A. Chatzistavrakidis, H. Steinacker, and G. Zoupanos, “Intersecting branes and a standard model realization in matrix models,” JHEP 09-115, 1–36 (2011).

    Google Scholar 

  17. M. Berkooz, M. R. Douglas, and R. G. Leigh, “Branes intersecting at angles,” Nucl. Phys. B 480, 265–278 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. I. Antoniadis, E. Kiritsis, and T. N. Tomaras, “A D-brane alternative to unification,” Phys. Lett. B 486, 186–193 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. G. Aldazabal et al., “D-branes at singularities: a bottom up approach to the string embedding of the standard model,” JHEP 08-002, 1–70 (2000).

    Google Scholar 

  20. L. E. Ibanez, F. Marchesano, and R. Rabadan, “Getting just the standard model at intersecting branes,” JHEP 11-002, 1–39 (2001).

    ADS  Google Scholar 

  21. J. Nishimura and A. Tsuchiya, “Realizing chiral fermions in the type IIB matrix model at finite N,” JHEP 12-002, 1–11 (2013).

    ADS  Google Scholar 

  22. S.-W. Kim, J. Nishimura, and A. Tsuchiya, “Late time behaviors of the expanding universe in the IIB matrix model,” JHEP 10–147, 1–25 (2012).

    ADS  Google Scholar 

  23. S.-W. Kim, J. Nishimura, and A. Tsuchiya, “Expanding universe as a classical solution in the Lorentzian matrix model for nonperturbative superstring theory,” Phys. Rev. D 86-027901, 1–5 (2012).

    Google Scholar 

  24. H. Aoki, J. Nishimura, and A. Tsuchiya, “Realizing three generations of the Standard Model fermions in the type IIB matrix model,” arXiv:1401.7848.

  25. R. C. Myers, “Dielectric branes,” JHEP 12-022, 1–40 (1999).

    Google Scholar 

  26. T. Imai et al., “Quantum corrections on fuzzy sphere,” Nucl. Phys. B 665, 520–544 (2003).

    Article  ADS  MATH  Google Scholar 

  27. T. Imai et al., “Effective actions of matrix models on homogeneous spaces,” Nucl. Phys. B 679, 143–167 (2004).

    Article  ADS  MATH  Google Scholar 

  28. H. Kaneko, Y. Kitazawa, and D. Tomino, “Stability of fuzzy S 2 × S 2 × S 2 in IIB type matrix models,” Nucl. Phys. B 725, 93–114 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. J. Nishimura and A. Tsuchiya, “Local field theory from the expanding universe at late times in the IIB matrix model,” PTEP 2013-043B03, 1–8 (2013).

    Google Scholar 

  30. Y. Ito et al., “A renormalization group method for studying the early universe in the Lorentzian IIB matrix model,” arXiv:1312.5415.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asato Tsuchiya.

Additional information

The article is published in the original.

Talk given at “Supersymmetries and Quantum Symmetries” (SQS’2013), July 29–August 3, 2013, Dubna, Russia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchiya, A. Expanding (3 + 1)-dimensional universe from the IIB matrix model. Phys. Part. Nuclei Lett. 11, 894–898 (2014). https://doi.org/10.1134/S1547477114070462

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477114070462

Keywords

Navigation