Skip to main content
Log in

Changes in sleep characteristics of rat preclinical model of Parkinson’s disease based on attenuation of the ubiquitin—proteasome system activity in the brain

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Numerous experimental and epidemiological data indicate a high significance of environmental neurotoxins, specifically, inhibitors of the ubiquitin–proteasome system, in pathogenesis of Parkinson’s disease (PD). To develop a preclinical model of PD in rats we used a technique of intranasal administration of lactacystin, a natural proteasome inhibitor, into the brain. It was found that three weeks after the first lactacystin administration it induced a little degeneration of dopaminergic neurons in the olfactory bulb and substantia nigra pars compacta without any olfactory dysfunction and motor behavior disorders. Besides, its effect led to the appearance of some signs of sleep disorders: increased somnolence (especially in the dark, active daily phase), fragmentation of slow-wave sleep, decreased EEG delta rhythm during slow-wave sleep. These signs share some similarity with PD and could be useful in clinical studies for the quick search for polysomnographic markers of the early PD stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soto, C. and Estrada, L.D., Protein misfolding and neurodegeneration, Arch. Neurol., 2008, vol. 65, no. 2, pp. 184–189.

    Article  PubMed  Google Scholar 

  2. Hartl, F.U., Bracher, A., and Hayer-Hartl, M., Molecular chaperones in protein folding and proteostasis, Nature, 2011, vol. 475, no. 7356, pp. 324–332.

    Article  CAS  PubMed  Google Scholar 

  3. Ebrahimi-Fakhari, D., Wahlster, L., and McLean, P.J., Molecular chaperones in Parkinson’s disease-present and future, J. Parkinson’s Dis., 2011, vol. 1, no. 4, pp. 299–320.

    CAS  Google Scholar 

  4. Uversky, V.N., Neuropathology, biochemistry, and biophysics of a-synuclein aggregation, J. Neurochem., 2007, vol. 103, no. 1, pp. 17–37.

    CAS  Google Scholar 

  5. Ebrahimi-Fakhari, D., Wahlster, L., and McLean, P.J., Protein degradation pathways in Parkinson’s disease: curse or blessing, Acta Neuropathol., 2012, vol. 124, no. 2, pp. 153–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pastukhov, Yu.F., Ekimova, I.V., and Chesnokova, A.V., Molecular mechanisms of pathogenesis of Parkinson’s disease and prospects for preventive therapy, Neirodegenerativnye zabolevaniya—on genoma do tselostnogo organizma, Chast I, Motornaya funktsiya i ee regulyatsiya v norme i pri patologii, Ugryumov, M.V., Ed., (Neurodegenerative Diseases— From Genome to Integral Organism, Pt. I, Motor Function and Its Regulation in the Norm and under Pathology, Ugryumov, M.V., Ed.), Moscow, 2014, vol. 1, pp. 316–355.

    Google Scholar 

  7. Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., and Del Tredici, K., Stages in the development of Parkinson’s disease related pathology, Cell. Tissue Res., 2004, vol. 318, pp. 121–134.

    Article  PubMed  Google Scholar 

  8. Gusev, E.I., Gekht, A.B., Popov, G.R., Volkova, N.A., Pastukhov, Yu.F., Pronina, T.S., Chesnokova, A.Yu., and Ekimova, I.V., Parkinson’s disease. Clinic, diagnostics and treatment, Neirodegenerativnye zabolevaniya: fundamental’nye i prikladnye aspekty, Ugryumov, M.V., Ed. (Neurodegenerative Diseases: Fundamental and Applied Aspects, Ugryumov, M.V., Ed.), Moscow, 2010, pp. 52–86.

  9. Pastukhov, Yu.F., Changes in characteristics of paradoxical sleep—the early sign of Parkinson’s disease, Zh. Vyssh. Nervn. Deyat., 2013, vol. 63, no. 1, pp. 75–85.

    CAS  Google Scholar 

  10. Litvinenko, I.V., Krasakov, I.V., and Tikhomirova, O.V., Sleep disorders in Parkinson’s disease: pathophysiological mechanisms, clinical variants and trends of correction, Bolezn’ Parkinsona i rasstroistva dvizhenii. Rukovodstvo dlya vrachei (Parkinson’s Disease and Motion Disorders, Handbook for Physicians, IINat. Congr. Parkinson’s Disease Motion Disord., Illarioshkin, S.N. and Levin, O.S., Eds.), Moscow, 2011, pp. 93–97.

    Google Scholar 

  11. Swick, T.J., Parkinson’s disease and sleep/wake disturbances, Parkinson’s Dis., 2012, vol. 2012, Article ID 20547.

    Google Scholar 

  12. Salawu, F. and Olokoba, A., Excessive daytime sleepiness and unintended sleep episodes associated with Parkinson’s disease, Oman Med. J., 2015, vol. 30, no. 1, pp. 3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ugrumov, M.V., Khaindrava, V.G., Kozina, E.A., Kucheryanu, V.G., Bocharov, E.V., Kryzhanovsky, G.N., Kudrin, V.S., Narkevich, V.B., Klodt, P.M., Rayevsky, K.S., and Pronina, T.S., Modeling of presymptomatic and symptomatic stages of parkinsonism in mice, Neurosci., 2011, vol. 181, pp. 175–188.

    Article  CAS  Google Scholar 

  14. Pastukhov, Yu.F., Chesnokova, A.Yu., Yakimchuk, A.A., Ekimova, I.V., Romanova, I.V., and Khudik, K.A., Changes in sleep during degeneration of neurons in the substantia nigra induced by proteasome inhibitor lactacystin, Ross. Fiziol. Zh. im. Sechenova, 2010, vol. 96, no. 12, pp. 1190–1202.

    CAS  Google Scholar 

  15. Duty, S. and Jenner, P., Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease, Br. J. Pharmacol., 2011, vol. 164, no. 4, pp. 1357–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manolov, A.I., Dolgikh, V.V., Ukraintseva, Yu.V., Zavalko, I.M., Revishchin, A.V., Pavlova, G.V., Pronina, T.S., Ugryumov, M.V., Dorokhov, V.B., and Kovalzon, V.M., Changes in motor activity and sleep–wake cycle in the MPTP-model of Parkinson’s disease in mice, Ross. Fiziol. Zh. im. Sechenova, 2014, vol. 100, no. 11, pp. 1252–1261.

    CAS  Google Scholar 

  17. Cross, T., Aquatic actinomycetes: a critical survey of the occurrence, growth and role of actinomycetes in aquatic habitats, J. Appl. Bacteriol., 1981, vol. 50, pp. 397–423.

    CAS  PubMed  Google Scholar 

  18. Ensign, J.C., Normand, P., Burden, J.P., and Yallop, C.A., Physiology of some actinomycete genera, Res. Microbiol., 1993, vol. 144, pp. 657–660.

    Article  CAS  PubMed  Google Scholar 

  19. Priyadarshi, A., Khuder, S.A., Schaub, E.A., and Priyadarshi, S.S., Environmental risk factors and Parkinson’s disease: a metaanalysis, Environ. Res., 2001, vol. 86, no. 2, pp. 122–127.

    Article  CAS  PubMed  Google Scholar 

  20. Kalueff, A.V., Keisala, T., Minasyan, A., Kumar, S.R., LaPorte, J.L., Murphy, D.L., and Tuohimaa, P., The regular and light–dark Suok tests of anxiety and sensorimotor integration: utility for behavioral characterization in laboratory rodents, Nat. Protoc., 2008, vol. 3, no. 1, pp. 129–136.

    Article  CAS  PubMed  Google Scholar 

  21. Gomez, C., Santiago-Mejia, J., Ventura-Martinez, R., and Rodriguez, R., The sunflower seed test: a simple procedure to evaluate forelimb motor dysfunction after brain ischemia, Drug Dev. Res., 2006, vol. 67, pp. 752–756.

    Article  CAS  Google Scholar 

  22. Kurtenbach, S., Wewering, S., Hatt, H., Neuhaus, E.M., and Lübbert, H., Olfaction in three genetic and two MPTP-induced Parkinson’s disease mouse models, PLoS One, 2013, vol. 8, no. 10, e77509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Maele-Fabry, G., Hoet, P., Vilain, F., and Lison, D., Occupational exposure to pesticides and Parkinson’s disease: a systematic review and meta- analysis of cohort studies, Environ. Int., 2012, vol. 46, pp. 30–43.

    Article  PubMed  Google Scholar 

  24. Fornai, F., Lenzi, P., Gesi, M., Ferrucci, M., Lazzeri, G., Busceti, C.L., Ruffoli, R., Soldani, P., Ruggieri, S., Alessandri, M.G., and Paparelli, A., Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition, J. Neurosci., 2003, vol. 23, pp. 8955–8966.

    CAS  PubMed  Google Scholar 

  25. Niu, C., Me, J., Pan, Q., and Fu, X., Nigral degeneration with inclusion body formation and behavioral changes in rats after proteasomal inhibition, Stereotact. Funct. Neurosurg., 2009, vol. 87, no. 2, pp. 69–81.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun, F., Anantharam, V., Zhang, D., Latchoumycandane, C., Kanthasamy, A., and Kanthasamy, A.G., Proteasome inhibitor MG-132 induces dopaminergic degeneration in cell culture and animal models, Neurotoxicol., 2006, vol. 27, no. 5, pp. 807–815.

    Article  CAS  Google Scholar 

  27. Lorenc-Koci, E., Lenda, T., Antkiewicz-Michaluk, L., Wardas, J., Domin, H., Smialowska, M., and Konieczny, J., Different effects of intranigral and intrastriatal administration of the proteasome inhibitor lactacystin on typical neurochemical and histological markers of Parkinson’s disease in rats, Neurochem. Int., 2011, vol. 58, no. 7, pp. 839–49.

    Article  CAS  PubMed  Google Scholar 

  28. Mackey, S., Jing, Y., Flores, J., Dinelle, K., and Doudet, D.J., Direct intranigral administration of an ubiquitin proteasome system inhibitor in rat: behavior, positron emission tomography, immunohistochemistry, Exp. Neurol., 2013, vol. 247, pp. 19–24.

    CAS  PubMed  Google Scholar 

  29. McNaught, K.S., Perl, D.P., Brownell, A.L., and Olanow, C.W., Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease, Ann. Neurol., 2004, vol. 56, no. 1, pp. 149–62.

    Article  CAS  PubMed  Google Scholar 

  30. Schapira, A.H., Cleeter, M.W., Muddle, J.R., Workman, J.M., Cooper, J.M., and King, R.H., Proteasomal inhibition causes loss of nigral tyrosine hydroxylase neurons, Ann. Neurol., 2006, vol. 60, no. 2, pp. 253–255.

    Article  CAS  PubMed  Google Scholar 

  31. Zeng, B.Y., Bukhatwa, S., Hikima, A., Rose, S., and Jenner, P., Reproducible nigral cell loss after systemic proteasomal inhibitor administration to rats, Ann. Neurol., 2006, vol. 60, no. 2, pp. 248–252.

    Article  PubMed  Google Scholar 

  32. Kordower, J.H., Kanaan, N.M., Chu, Y., Suresh Babu, R., Stansell, J., Terpstra, B.T., Sortwell, C.E., Steece-Collier, K., and Collier, T.J., Failure of proteasome inhibitor administration to provide a model of Parkinson’s disease in rats and monkeys, Ann. Neurol., 2006, vol. 60, no. 2, pp. 264–268.

    Article  CAS  PubMed  Google Scholar 

  33. Manning-Bog, A.B., Reaney, S.H., Chou, V.P., Johnston, L.C., McCormack, A.L., Johnston, J., Langston, J.W., and Di Monte, D.A., Lack of nigrostriatal pathology in a rat model of proteasome inhibition, Ann. Neurol., 2006, vol. 60, no. 2, pp. 256–260.

    Article  PubMed  Google Scholar 

  34. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F., Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations, J. Neurol. Sci., 1973, vol. 20, no. 4, pp. 415–455.

    CAS  PubMed  Google Scholar 

  35. Prediger, R.D., Aguiar, A.S., Rojas-Mayorquin, A.E., Figueiredo, C.P., Matheus, F.C., Ginestet, L., Chevarin, C., Bel, E.D., Mongeau, R., Hamon, M., Lanfumey, L., and Raisman-Vozari, R., Single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson’s disease, Neurotox. Res., 2010, vol. 17, no. 2, pp. 114–129.

    Article  CAS  PubMed  Google Scholar 

  36. Iranzo, A., Parkinson disease and sleep: sleep–wake changes in the premotor stage of Parkinson disease; impaired olfaction and other prodromal features, Curr. Neurol. Neurosci. Rep., 2013, vol. 13, no. 9, pp. 1–9.

    Article  Google Scholar 

  37. Kovalzon, V.M. and Zavalko, I.M., The speep–wake cycle and Parkinson’s disease, Neirokhim., 2013, vol. 30, no. 3, pp. 193–206.

    Google Scholar 

  38. Dos Santos, A.B., Kohlmeier, K.A., and Barreto, G.E., Are sleep disturbances preclinical markers of Parkinson’s disease? Neurochem. Res., 2015, vol. 40, no. 3, pp. 421–427.

    Article  PubMed  Google Scholar 

  39. Verbitskiy, E.V., Anxiety and sleep, Zh. Vyssh. Nervn. Deyat., 2013, vol. 63, no. 1, pp. 6–12.

    Google Scholar 

  40. Boissard, E., Fort, P., Gervasoni, D., Barbagli, B., and Luppi, P., Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset, Eur. J. Neurosci., 2003, vol. 18, no. 6, pp. 1627–1639.

    Article  PubMed  Google Scholar 

  41. Léna, I., Parrot, S., Deschaux, O., Muffat-Joly, S., Sauvinet, V., Renaud, B., Suaud-Chagny, M.F., and Gottesmann, C., Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats, J. Neurosci. Res., 2005, vol. 81, no. 6, pp. 891–899.

    Article  PubMed  Google Scholar 

  42. Oganesyan, G.A., Aristakesyan, E.A., Romanova, I.V., Belova, V.A., and Artamokhina, I.V., The dopaminergic nigrostriatal system under conditions of sleep deprivation in rats, Ross. Fiziol. Zh. im. I.M. Sechenova, 2007, vol. 93, no. 12, pp. 1344–1354.

    CAS  Google Scholar 

  43. Monti, J.M. and Jantos, H., The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking, Prog. Brain Res., 2008, vol. 172, pp. 625–646.

    CAS  PubMed  Google Scholar 

  44. Laloux, C., Derambure, P., Kreisler, A., Houdayer, E., Brueziere, S., Bordet, R., Destée, A., and Monaca, C., MPTP-treated mice: long-lasting loss of nigral TH-ir neurons but not paradoxical sleep alterations, Exp. Brain Res., 2008, vol. 186, pp. 635–642.

    Article  PubMed  Google Scholar 

  45. Almirall, H., Pigarev, I.N., de la Calzada, M.D., Pigareva, M.L., Sagales, T., and Herrero, M.T., Nocturnal sleep structure and temperature slope in MPTP treated monkeys, J. Neural Transm., 1999, vol. 106, pp. 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  46. Vo, Q., Gilmour, T.P., Venkiteswaran, K., Fang, J., and Subramanian, T., Polysomnographic fea tures of sleep disturbances and REM sleep behavior disorder in the unilateral 6-OHDA lesioned hemiparkinsonian rat, Parkinson’s Dis., vol. 2014, Article ID 852965.

  47. Verhave, P.S., Jongsma, M.J., Van den Berg, R.M., Vis, J.C., Vanwersch, R.A., Smit, A.B., Van Someren, E.J., and Philippens, I.H., REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease, Sleep, 2011, vol. 34, no. 8, pp. 1119–1125.

    PubMed  PubMed Central  Google Scholar 

  48. Lu, C.Y., Yi, P.L., Tsai, C.H., Cheng, C.H., Chang, H.H., Hsiao, Y.T., and Chang, F.C., TNFNF-kappaB signaling mediates excessive somnolence in hemiparkinsonian rats, Behav. Brain Res., 2010, vol. 208, no. 2, pp. 484–496.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ekimova.

Additional information

Original Russian Text © I.V. Ekimova, V.V. Simonova, M.A. Guzeev, K.V. Lapshina, M.V. Chernyshev, Yu. F.Pastukhov, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 6, pp. 413—422.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekimova, I.V., Simonova, V.V., Guzeev, M.A. et al. Changes in sleep characteristics of rat preclinical model of Parkinson’s disease based on attenuation of the ubiquitin—proteasome system activity in the brain. J Evol Biochem Phys 52, 463–474 (2016). https://doi.org/10.1134/S1234567816060057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1234567816060057

Key words

Navigation