Skip to main content
Log in

The Relationship between Microhardness and Glass Transition Temperature of Chalcogenide Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In this work, we have discussed the transition of glass to a softened (viscous) state as a result of simultaneous impacts of temperature and mechanical stresses. This approach allows describing the temperature dependence of the microhardness of glass below the glass transition temperature and substantiates the previously suggested functional relationship of these two parameters. As an illustration, the proposed model is applied to a classical chalcogenide glass, namely to glassy selenium and glasses based on glassy selenium. Important result lies in the fact that the relationship between the microhardness and enthalpy of glasses is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Sharma, R., Welch, R.S., Kang, M., Goncalves, C., Blanco, C., Buff, A., Fauvel, V., Loretz, T., Rivero-Baleine, C., and Richardson, K., Impact of morphology and microstructure on the mechanical properties of Ge–As–Pb–Se glass ceramics, Appl. Sci., 2020, vol. 10, 2836.

  2. Bar, A.K., Kar, T., Royan, D., Bhattacharya, S., Vickers micro hardness measurement of GlassNanoco, J. Mater. Sci. Mech. Eng., 2014, vol. 1, no. 1, pp. 18–22.

    Google Scholar 

  3. Kugler, S. and Shimakawa, K., Amorphous Semiconductors, Cambridge: Cambridge Univ. Press, 2015.

    Google Scholar 

  4. Freitas, J., Shimakawa, K., and Kugler, S., Some remarks on the glass-transition temperature in chalcogenide glasses: A correlation with the microhardness ruben, Chalcogenide Lett., 2013, vol. 10, pp. 39–43.

    CAS  Google Scholar 

  5. Sanditov, D.S. and Badmaev, S.S., Delocalized-atom model and properties of sulfophosphate glasses, Inorg. Mater., 2019, vol. 55, pp. 90–95.

    Article  CAS  Google Scholar 

  6. Balta Calleja, F.J., Sanditov, D.S., and Privalko, V.P., Review: The microhardness of non-crystalline materials, J. Mater. Sci., 2002, vol. 37, pp. 4507–4516.

    Article  Google Scholar 

  7. Fakirov, S., The relationship between the microhardness and glass transition temperature of inorganic glasses compared with polymeric glasses, Int. J. Polym. Mater. Polym. Biomater., 2005, vol. 54, pp. 1185–1189.

    Article  CAS  Google Scholar 

  8. Balta Calleja, F.J. and Krumova, M., On the relationship between microhardness and glass transition temperature of some amorphous polymers, J. Polym. Sci. B: Polym. Phys., 1999, vol. 37, pp. 1413–1419.

    Google Scholar 

  9. Slouf, M., Strachota, B., Strachota, A., Gajdosova, V., Bertschova, V., and Nohava, J., Macro-, micro- and nanomechanical characterization of crosslinked polymers with very broad range of mechanical properties, Polymers, 2020, vol. 12, no. 12, 2951.

    Article  CAS  Google Scholar 

  10. Tveryanovich, Yu.S., On the correlation of the microhardness and softening temperature for chalcogenide glasses, Glass Phys. Chem., 2022, vol. 48, pp. 72–74.

    Article  CAS  Google Scholar 

  11. Borisova, Z., Glassy Semiconductors, Boston, MA: Springer, 1981, p. 505.

    Book  Google Scholar 

  12. Kasap, S.O. and Yannacopoulos, S., Mechanical and thermal properties of the glassy semiconductor chlorinated Se0.997As0.003 used as an X-ray imaging material, Can. J. Phys., 1989, vol. 67, pp. 686–693.

    Article  CAS  Google Scholar 

  13. Le Bourhis, E., Gadaud, P., Guin, J.-P., Toutnerie, N., Zhang, X.H., Lucas, J., and Rouxel, T., Temperature dependence of the mechanical behavior of a GeAsSe glass, Scr. Mater., 2001, vol. 45, pp. 317–323.

    Article  CAS  Google Scholar 

  14. Gaur, U., Shu, H.-C., Mehta, A., and Wunderlich, B., Heat capacity and other thermodynamic properties of linear macromolecules. I. Selenium, J. Phys. Chem., 1981, vol. 10, pp. 89–117.

    CAS  Google Scholar 

  15. Minaev, V.S., Parfenov, N.M., Timoshenkov, S.P., Kalugin, V., Batyunya, L.P., and Mukimov, D.Zh., Polymer-polymorphoid nature of the glass aging process, Mater. Electron. Technol., 2014, vol. 17, pp. 17–23.

    Google Scholar 

  16. Guin, J.-P., Rouxel, T., Keryvin, V., Sangleboeuf, J.-Ch., Serre, I., and Lucas, J., Indentation creep of Ge-Se chalcogenide glasses below Tg: Elastic recovery and non-newtonian flow, J. Non-Cryst. Solids, 2002, vol. 298, pp. 260–269.

    Article  CAS  Google Scholar 

  17. Rao, V., Mehta, N., Kumar, A., and Dwivedi, D.K., Effect of Sb incorporation on thermo-mechanical properties of amorphous Se–Te–Sn alloys, Mater. Res., 2018, vol. 5, no. 6, 065206.

    Google Scholar 

  18. Xinyu Huang, Qing Jiao, Changgui Lin, Erwei Zhu, Xueyun Liu, Shixun Dai, and Tiefeng Xu, Formation, microstructure, and conductivity of a novel Ga2S3-Sb2S3-AgI chalcogenide system, Sci. Rep., 2018, vol. 8, 1699.

    Article  Google Scholar 

  19. Zhuobin Li, ChangguiLin, GuoshunQu, LaurentCalvez, ShixunDai, Xianghua Zhang, Tiefeng Xu, and Qiuhua Nie, Formation and properties of chalcogenide glasses based on GeS2-Sb2S3-AgI system, Mater. Lett., 2014, vol. 132, pp. 203–205.

  20. Malesh, V.I., Rubish, V.V., Shpak, I.I., Rubish, V.M., and Puha, P.P., Polarization properties and a local structure of (GeSe2)x(Sb2Se3)1 – x glasses, Semicond. Phys., Quantum Electron. Optoelectron., 2002, vol. 5, no. 4, pp. 385–390.

    Article  CAS  Google Scholar 

  21. Giridhar, A., Narasimham, P.S.L., and Mahadevan, S., Density and microhardness of Ge-Sb-Se glasses, J. Non-Cryst. Solids, 1981, vol. 43, pp. 29–35.

    Article  CAS  Google Scholar 

  22. Jun Ho Lee, Hyun Kim, Ji In Lee, Se Young Ko, Ju Hyeon Choi, and Yong Gyu Choi, Infrared transmission and refractive index dispersion of mixed-chalcogen Ge–Sb–S–Se glasses for use in molded lens applications, J. Non-Cryst. Solids, 2020, vol. 546, 120258.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Russian Foundation for Basic Research, project no. 20-03-00185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Tveryanovich.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tveryanovich, Y.S. The Relationship between Microhardness and Glass Transition Temperature of Chalcogenide Glasses. Glass Phys Chem 48, 243–247 (2022). https://doi.org/10.1134/S1087659622040149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622040149

Keywords:

Navigation