Skip to main content
Log in

A Study of the Structure and Spectral Properties of Solutions and Ag/AgBr-Containing Composite Coatings on Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In this study, composite Ag/AgBr/Zn(NO3)2/PVP coatings are synthesized from solutions and their structure and luminescent properties are studied. It is shown that the luminescent properties of aqueous solutions and Ag/AgBr/Zn(NO3)2/PVP composite coatings formed from them are largely determined by the presence in the structure of materials of various small Agn (n < 5) molecular clusters. The formation of AgBr particles is accompanied by a change in the shape of the luminescence spectra, which indicates the evolution of the sizes and concentrations of various Agn molecular clusters when introducing bromide anions into the composition of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Tóth, Z.-R., Pap, Z., Kiss, J., Baia, L., Gyulavári, T., Czekes, Z., Todea, M., Magyari, K., Kovács, G., and Hernadi, K., Shape tailoring of AgBr microstructures: Effect of the cations of different bromide sources and applied surfactants, RSC Adv., 2021, vol. 11, pp. 9709–9720.

    Article  Google Scholar 

  2. Bai, J. and Li, W.-b., Simple approach to fabricate AgBr nanoparticles/polyvinylpyrrolidone microspheres, Micro Nano Lett., 2010, vol. 5, no. 4, pp. 234–236.

    Article  CAS  Google Scholar 

  3. Chi, Y., Zhao, L., Lu, X., An, c., Guo, W., Liu, Y., and Wu, C.-M.L., Effects of subnanometer silver clusters on AgBr (110) photocatalyst surface: A theoretical investigation, Catal. Sci. Technol., 2015, vol. 5, pp. 4821–4829.

    Article  CAS  Google Scholar 

  4. Wang, H., Gao, J., Guo, T., Wang, R., Guo, L., Liu, Y., and Li, J., Facile synthesis of AgBr nanoplates with exposed {111} facets and enhanced photocatalytic properties, Chem. Commun., 2012, vol. 48, pp. 275–277.

    Article  CAS  Google Scholar 

  5. Li, B., Wang, H., Zhang, B., Hu, P., Chen, C., and Guo, L., Facile synthesis of one dimensional AgBr@Ag nanostructures and their visible light photocatalytic properties, ACS Appl. Mater. Interface, 2013, vol. 5, no. 23, pp. 12283–12287.

    Article  CAS  Google Scholar 

  6. Sambhy, V., Macbride, M.M., Peterson, B.R., and Sen, A., Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials, J. Am. Chem. Soc., 2006, vol. 128, pp. 9798–9808.

    Article  CAS  Google Scholar 

  7. Meiklyar, P.V., Fizicheskie protsessy pri obrazovanii skrytogo fotograficheskogo izobrazheniya (Physical Processes in the Formation of a Latent Photographic Image), Moscow: Nauka, 1972.

  8. Shi Lei, Liang Lin, Ma Jun, and Sun Jianmin, Improved photocatalytic performance over AgBr/ZnO under visible light, Superlatt. Microstruct., 2013, vol. 62, pp. 128–139.

    Article  Google Scholar 

  9. Tao Qingsong, Yang Fan, Teng Fei, Wu Peiyi, Tian Baozhu, and Zhang Jinlong, Study of the factors influencing the photo-stability of AgAgBr plasmonic photocatalyst, Res. Chem. Intermed., 2015, vol. 45, pp. 7285–7297.

    Article  Google Scholar 

  10. Hu Chun, Lan Yongqing, Qu Jinhui, Hu Xuexiang, and Wang Aimin, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria, J. Phys. Chem. B, 2006, vol. 110, no. 9, pp. 4066–4072.

    Article  Google Scholar 

  11. Wang Peng, Huang Baibiao, Zhang Xiaoyang, Qin Xiaoyan, Jin Hao, Dai Ying, Wang Zeyan, Wei Jiyong, Zhan Jie, Wang Shaoying, Wang Junpeng, Whangbo Myung-Hwan, Highly efficient visible light plasmonic photocatalyst Ag/AgBr, Chem.-Eur. J., 2009, vol. 15, no. 8, pp. 1821–1824.

    Article  Google Scholar 

  12. Istomina, O.V., Evstrop’ev, S.K., Kolobkova, E.V., and Trofimov, A.O., Photolysis of diazo dye in solutions and films containing zinc and silver oxides, Opt. Spectrosc., 2018, vol. 124, no. 6, pp. 774–778.

    Article  CAS  Google Scholar 

  13. Evstropiev, S.K., Dukelskii, K.V., Kislyakov, I.M., Evstropyev, K.S., and Gatchin, Yu.A., Immersion film-forming compositions based on high-molecular polyvinylpyrrolidone, Polym. Adv. Technol., 2016, vol. 27, pp. 1258–1260.

    Article  CAS  Google Scholar 

  14. Evstropiev, S.K., Nikonorov, N.V., Saratovskii, A.S., Dukelskii, K.V., Vasiliev, V.N., Karavaeva, A.V., and Soshnikov, I.P., Photo-stimulated evolution of different structural forms of silver in solutions, composite and oxide coatings, J. Photochem. Photobiol. A, 2020, vol. 403, 112858.

    Article  CAS  Google Scholar 

  15. Kulagina, A.S., Evstropiev, S.K., Dukelskii, K.V., Volkova, N.A., Evstropyev, K.S., and Nikonorov, N.V., Photodecomposition of organic/inorganic composite materials based on polyvinylpyrrolidone, J. Phys.: Conf. Ser., 2018, vol. 1124, no. 5, 051060.

    Google Scholar 

  16. Rui, Y., Zhao, W., Zhu, D., Wang, H., Song, G., Swihart, M.T., Wan, N., Gu, D., Tang, X., Yang, Y., and Zhang, T., Understanding the effects of NaCl, NaBr and their mixtures on silver nanowire nucleation and growth in terms of the distribution of electron traps in silver halide crystals, Nanomaterials, 2018, vol. 8,  161.

    Article  Google Scholar 

  17. Tyurin, A.V. and Zhukov, S.A., The structure of radiative tunnel recombination sites in emulsion microcrystals of AgBr(I), Opt. Spectrosc., 2018, vol. 124, no. 2, pp. 174–179.

    Article  CAS  Google Scholar 

  18. Chen, W., Rehm, J.M., Meyers, C., Freedhoff, M.I., Marchetti, A., and Mclendon, G., Luminescence properties of indirect bandgap semiconductors: Nanocrystals of silver bromide, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 1994, vol. 252, no. 1, pp. 79–86.

    Google Scholar 

  19. Doycho, I.K., Gevelyuk, S.A., Ptashchenko, O.O., Rysiakiewicz-Pasek, E., Tolmachova, N.V., Tyurin, O.V., and Zhukov, S.O., Photoluminescence features of AgBr nanoparticles formed in porous glass matrices, Opt. Appl., 2010, vol. 40, no. 2, pp. 323–332.

    CAS  Google Scholar 

  20. Chen, D., Chen, Q., Zhang, W., Ge, L., Shao, G., Fan, B., Lu, H., Zhang, R., Yang, D., and Shao, G., Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants, Superlatt. Microstruct., 2015, vol. 80, pp. 136–150.

    Article  CAS  Google Scholar 

  21. Liu, S., Zheng, M., Chen, R., and Wang, Z., One-pot synthesis of an AgBr/ZnO hierarchical structure with enhanced photocatalytic capacity, RSC Adv., 2017, vol. 7, pp. 31230–31238.

    Article  CAS  Google Scholar 

  22. Evstropiev, S.K., Nikonorov, N.V., and Saratovskii, A.S., Double stabilization of silver molecular clusters in thin films, Res. Chem. Intermed., 2020, vol. 46, no. 9, pp. 4033–4046.

    Article  CAS  Google Scholar 

  23. Xu, L., Wei, B., Liu, W., Zhang, H., Su, C., and Che, J., Flower-like ZnO-Ag2O composites: Precipitation synthesis and photocatalytic activity, Nanoscale Res. Lett., 2013, vol. 8, 536.

    Article  Google Scholar 

  24. Evstrop'ev, S.K., Nikonorov, N.V., Saratovskii, A.S., and Danilovich, D.P., The effect of UV irradiation on the formation of silver molecular clusters and their stabilization in solutions and composite and oxide coatings, Opt. Spectrosc., 2020, vol. 128, no. 6, pp. 707–712.

    Article  CAS  Google Scholar 

  25. Pyne, S., Sahoo, G.P., Bhui, D.K., Bar, H., Sarkar, P., Samanta, S., Maity, A., and Misra, A., Enhanced photocatalytic activity of metal coated ZnO nanowires, Spectrochim. Acta, Part A, 2012, vol. 93, pp. 100–105.

    Article  CAS  Google Scholar 

  26. Chi, Y., Zhao, L., Li, X., Zhu, H., and Guo, W., First principles study of the nanoclusters adsorption effect on the photocatalytic properties of AgBr (110) surface, Appl. Surf. Sci., 2018, vol. 440, pp. 907–915.

    Article  CAS  Google Scholar 

  27. Matsunaga, K., Tanaka, I., and Adachi, H., Electronic mechanism of Ag-cluster formation in AgBr and AgI, J. Phys. Soc. Jpn., 1998, vol. 67, pp. 2027–2036.

    Article  CAS  Google Scholar 

  28. Stolyarchuk, M.V. and Sidorov, A.I., Electronic absorption spectra of neutral and charged silver molecular clusters, Opt. Spectrosc., 2018, vol. 125, no. 3, pp. 305–310.

    Article  CAS  Google Scholar 

  29. Silvert, P.-Y., Herrera-Urbina, R., and Tekaia-Elhsissen, K., Preparation of colloidal silver dispersions by the polyol process. Part 2. Mechanism of particle formation, J. Mater. Chem., 1997, vol. 7, no. 2, pp. 293–299.

    Article  CAS  Google Scholar 

  30. Wang, H., Qiao, X., Chen, J., Wang, X., and Ding, S., Mechanisms of PVP in the preparation of silver nanoparticles, Mater. Chem. Phys., 2005, vol. 94, nos. 2–3, pp. 449–452.

    Article  CAS  Google Scholar 

  31. Ramesh, T.N. and Madhu, T.L., Thermal decomposition studies of layered metal hydroxynitrates (metal: Cu, Zn, Cu/Co, and Zn/Co), Int. J. Inorg. Chem., 2015, vol. 2015, 536470.

    Google Scholar 

  32. Mirsalari, S.A. and Nezamzadeh-Ejhieh, A., The catalytic activity of the coupled CdS–AgBr nanoparticles: A brief study on characterization and its photo-decolorization activity towards methylene blue, Desalin. Water Treat., 2020, vol. 175, pp. 263–272.

    Article  CAS  Google Scholar 

  33. Rodnyi, P.A., Chernenko, K.A., and Venevtsev, I.D., Mechanisms of ZnO luminescence in the visible spectral region, Opt. Spectrosc., 2018, vol. 125, no. 3, pp. 372–378.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by grant no. 20-19-00559 from the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Saratovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstrop’ev, S.K., Saratovskii, A.S. & Volynkin, V.M. A Study of the Structure and Spectral Properties of Solutions and Ag/AgBr-Containing Composite Coatings on Glasses. Glass Phys Chem 48, 266–272 (2022). https://doi.org/10.1134/S1087659622040083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622040083

Keywords:

Navigation