Skip to main content
Log in

Physical and Mechanical Properties of Composite Ceramics in the ZrB2–SiC–MoSi2 System

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract—

The sintering ability and mechanical characteristics of the materials obtained by sintering in the ZrB2–SiC–MoSi2 system are investigated. The density, linear coefficient of thermal expansion 4.9–6.1 × 10–6 K–1, ultimate strength in the bending of ceramic specimens (σmax = 460 MPa), and elastic modulus (up to 360 MPa) are determined; and the microstructure is investigated. The phase composition of some ceramics, in addition to the initial components, contains new phases: MoB, ZrC, and Mo4.8Si3C0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Silva, E.A.C. and Kaufman, M.J., Phase relations in the Mo–Si–C system relevant to the processing of MoSi2–SiC composites, Metall. Mater. Trans. A, 1994, vol. 25, no. 1, pp. 5–15.

    Article  Google Scholar 

  2. Ordan’yan, S.S., Vikhman, S.V., Larentseva, S.A., and Smirnov, V.V., Structure of the SiC–MoSi2 section in the Mo–Si–C system, Ogneupory Tekh. Keram., 2006, no. 11, pp. 2–4.

  3. Ordan’yan, S.S., Bulina, E.N., Vikhman, S.V., and Smirnov, V.V., Interaction in SiC–WSi2 system, Ogneupory Tekh. Keram., 2007, no. 2, pp. 3–5.

  4. Ordan’yan, S.S., Vikhman, S.V., Bulina, E.N., and Smirnov, V.V., Interaction in SiC–MeVSi2 system, Ogneupory Tekh. Keram., 2008, no. 5, pp. 14–17.

  5. Ordan’yan, S.S., Regularities of interaction in the SiC–MeIV–VIB2 systems, Zh. Prikl. Khim., 1993, vol. 66, no. 11, pp. 2439–2444.

    Google Scholar 

  6. Ordan’yan, S.S., Vikhman, S.V., Nagaeva, Yu.V., and Ovsepyan, A.O., Interaction in MoSi2–MeIVB2 systems, Izv. NAN RA GIUA, Ser. Tekh. Nauk, 2011, vol. 64, no. 1, pp. 36–43.

    Google Scholar 

  7. Ordan’yan, S.S., Vikhman, S.V., and Nagaeva, Y.S., Composite WSi2-MeVB2 materials in W–Si–MeV–B systems, Refract. Ind. Ceram., 2009, vol. 50, no. 2, pp. 127–130.

    Article  Google Scholar 

  8. Meier, S. and Heinrich, J.G., Processing–microstructure–properties relationships of MoSi2–SiC composites, J. Eur. Ceram. Soc., 2002, vol. 22, no. 13, pp. 2357–2363.

    Article  CAS  Google Scholar 

  9. Gnesin, B.A. and Gnesin, I.B., Synthesis of the Nowotny phase Mo4.8Si3C0.6 from Mo5Si3+ carbon mixtures, Inorg. Mater., 2015, vol. 51, no. 10, pp. 991–998.

    Article  CAS  Google Scholar 

  10. Gnesin, B.A., Gnesin, I.B., and Nekrasov, A.N., The interaction of carbon with Mo5Si3 and W5Si3 silicides. Nowotny phase synthesis, Intermetallics, 2013, vol. 41, pp. 82–95.

    Article  CAS  Google Scholar 

  11. Sciti, D., Silvestroni, L., Celotti, G., and Guicciardi, S., Sintering and mechanical properties of ZrB2–TaSi2 and HfB2–TaSi2 ceramic composites, J. Am. Ceram. Soc., 2008, vol. 91, no. 10, pp. 3285–3291.

    Article  CAS  Google Scholar 

  12. Sciti, D., Guicciardi, S., Bellosi, A., and Pezzotti, G., Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite, J. Am. Ceram. Soc., 2006, vol. 89, no. 7, pp. 2320–2322.

    Article  CAS  Google Scholar 

  13. Sciti, D., Monteverde, F., Guicciardi, S., Pezzotti, G., and Bellosi, A., Microstructure and mechanical properties of ZrB2–MoSi2 ceramic composites produced by different sintering techniques, Mater. Sci. Eng., A, 2006, vol. 434, nos. 1–2, pp. 303–309.

    Article  Google Scholar 

  14. Rezaie, A., Fahrenholtz, W.G., and Hilmas, G.E., Oxidation of zirconium diboride–silicon carbide at 1500°C at a low partial pressure of oxygen, J. Am. Ceram. Soc., 2006, vol. 89, no. 10, pp. 3240–3245.

    Article  CAS  Google Scholar 

  15. Monteverde, F. and Bellosi, A., The resistance to oxidation of an HfB2–SiC composite, J. Eur. Ceram. Soc., 2005, vol. 25, no. 7, pp. 1025–1031.

    Article  CAS  Google Scholar 

  16. Monteverde, F. and Bellosi, A., Microstructure and properties of an HfB2–SiC composite for ultra high temperature applications, Adv. Eng. Mater., 2004, vol. 6, no. 5, pp. 331–336.

    Article  CAS  Google Scholar 

  17. Monteverde, F., Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd., 2007, vol. 428, nos. 1–2, pp. 197–205.

    Article  CAS  Google Scholar 

  18. Mallik, M., Ray, K.K., and Mitra, R., Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites, J. Eur. Ceram. Soc., 2011, vol. 31, nos. 1–2, pp. 199–215.

    Article  CAS  Google Scholar 

  19. Nguyen, V.H., Delbari, S.A., Asl, M.S., Namini, A.S., Kakroudig, M.G., Azizian-Kalandaragh, Y., Van Le, Q., Mohammadi, M., and Shokouhimehrc, M., Role of hot-pressing temperature on densification and microstructure of ZrB2–SiC ultrahigh temperature ceramics, Int. J. Refract. Met. Hard Mater., 2020, vol. 93, 105355.

    Article  CAS  Google Scholar 

  20. Guo, S.Q., Nishimura, T., Mizuguchi, T., and Kagawa, Y., Mechanical properties of hot-pressed ZrB2–MoSi2–SiC composites, J. Eur. Ceram. Soc., 2008, vol. 28, no. 9, pp. 1891–1898.

    Article  CAS  Google Scholar 

  21. Monteverde, F., The addition of SiC particles into a MoSi2-doped ZrB2 matrix: Effects on densification. Microstructure and thermo-physical properties, Mater. Chem. Phys., 2009, vol. 113, nos. 2–3, pp. 626–633.

    Article  CAS  Google Scholar 

  22. Mashhadi, M., Shambuli, M., and Safi, S., Effect of MoSi2 addition and particle size of SiC on pressureless sintering behavior and mechanical properties of ZrB2–SiC–MoSi2 composites, J. Mater. Res. Technol., 2016, vol. 5, no. 3, pp. 200–205.

    Article  CAS  Google Scholar 

  23. He, R., Tong, Z., Zhang, K., and Fang, D., Mechanical and electrical properties of MoSi2-based ceramics with various ZrB2–20 vol % SiC as additives for ultra-high temperature heating element, Ceram. Int., 2018, vol. 44, no. 1, pp. 1041–1045.

    Article  CAS  Google Scholar 

  24. Yang, Y., Li, M., Xu, L., Xu, J., Qian, Y., Zuo, J., and Li, T. Oxidation behaviours of ZrB2–SiC–MoSi2 composites at 1800°C in air with different pressures, Corros. Sci., 2019, vol. 157, pp. 87–97.

    Article  CAS  Google Scholar 

  25. Ghadami, S., Taheri-Nassaj, E., and Baharvandi, H.R., Novel HfB2–SiC–MoSi2 composites by reactive spark plasma sintering, J. Alloys Compd., 2019, vol. 809, p. 151705.

    Article  CAS  Google Scholar 

  26. Ghadami, S., Taheri-Nassaj, E., Baharvandi, H.R., and Ghadami, F., Effect of in situ VSi2 and SiC phases on the sintering behavior and the mechanical properties of HfB2-based composites, Sci. Rep., 2020, vol. 10, no. 1, pp. 1–13.

    Article  Google Scholar 

  27. Bai, Y., Sun, M., Li, M., Fan, S., and Cheng, L., Improved fracture toughness of laminated ZrB2–SiC–MoSi2 ceramics using SiC whisker, Ceram. Int., 2018, vol. 44, no. 8, pp. 8890–8897.

    Article  CAS  Google Scholar 

  28. Potanin, A.Y., Astapov, A.N., Rupasov, S.I., Vorotilo, S., Kochetov, N.A., Kovalev, D.Y., and Levashov, E.A., Structure and properties of MoSi2–MeB2–SiC (Me = Zr, Hf) ceramics produced by combination of SHS and HP techniques, Ceram. Int., 2020, vol. 46, no. 18, pp. 28725–28734.

    Article  CAS  Google Scholar 

  29. Ordanyan, S.S. and Unrod, V.I., Eutectics and their models sintered composites in systems of refractory materials, Refract. Ind. Ceram., 2005, vol. 46, no. 4, pp. 276–281.

    Article  Google Scholar 

  30. Markov, M.A., Krasikov, A.V., Bykova, A.D., Staritsyn, M.V., Ordan’yan, S.S., Vikhman, S.V., and Perevislov, S.N., Preparation of MoSi2–SiC–ZrB2 structural ceramics by free sintering, Refract. Ind. Ceram., 2019, vol. 60, no. 4, pp. 385–388. https://doi.org/10.1007/s11148-019-00372-4

    Article  CAS  Google Scholar 

  31. Perevislov, S.N., Markov, M.A., Motailo, E.S., Vikhman, S.V., and Titov, D.D., Physical and mechanical properties of composite materials in the MoSi2–SiC–TiB2 system, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 848, p. 012067. https://doi.org/10.1088/1757-899X/848/1/012067

  32. Fu, Q.G., Jing, J.Y., Tan, B.Y., Yuan, R.M., Zhuang, L., and Li, L., Nanowire-toughened transition layer to improve the oxidation resistance of SiC–MoSi2–ZrB2 coating for C/C composites, Corros. Sci., 2016, vol. 111, pp. 259–266.

    Article  CAS  Google Scholar 

  33. Wang, P., Li, H., Ren, X., Yuan, R., Hou, X., and Zhang, Y., HfB2–SiC–MoSi2 oxidation resistance coating fabricated through in-situ synthesis for SiC coated C/C composites, J. Alloys Compd., 2017, vol. 722, pp. 69–76.

    Article  CAS  Google Scholar 

  34. Wang, P., Li, H., Yuan, R., Xie, W., and Zhang, Y., An oxidation and ablation protective WSi2-HfB2-SiC coating for SiC coated C/C composites at 1973 K and above, Corros. Sci., 2020, vol. 177, 108964.

    Article  CAS  Google Scholar 

  35. Bezzi, F., Burgio, F., Fabbri, P., Grilli, S., Magnani, G., Salernitano, E., and Scafe, M., SiC/MoSi2 based coatings for Cf/C composites by two step pack cementation, J. Eur. Ceram. Soc., 2019, vol. 9, no. 1, pp. 79–84.

    Article  Google Scholar 

  36. Sinitsyn, D.Y., Anikin, V.N., Eremin, S.A., Vanyushin, V.O., Shvetsov, A.A., and Bardin, N.G., Heat-resistant coatings of ZrB2–MoSi2–SiC on carbon-carbon composite materials for aerospace applications, Refract. Ind. Ceram., 2020, pp. 1–7.

  37. Nesmelov, D.D., Novoselov, E.S., Lysenkov, A.S., Vikhman, S.V., and Perevislov, S.N., Hardness and fracture-toughness of hot-pressed LaB6–TiB2 ceramics, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 848, p. 012059. https://doi.org/10.1088/1757-899X/848/1/012059

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Engineering Center of St. Petersburg State Institute of Technology.

Funding

This study was supported by the Russian Science Foundation, grant no. 19-73-10180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Motailo.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motailo, E.S., Lisyanskii, L.A., Vikhman, S.V. et al. Physical and Mechanical Properties of Composite Ceramics in the ZrB2–SiC–MoSi2 System. Glass Phys Chem 47, 646–652 (2021). https://doi.org/10.1134/S1087659621060237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621060237

Keywords:

Navigation