Skip to main content
Log in

Phase Equilibriums in the Al2O3–SiO2–ZrO2 System: Calculation and Experiment

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract—

The phase equilibria in the Al2O3–SiO2–ZrO2 system up to a temperature of 2550.15 K, calculated using the Nuclea database, are considered in comparison with the experimental data available in the literature. The calculated eight isothermal sections of the phase diagram of the system under consideration are an addition to the previously obtained few experimental data. The phase equilibria in the Al2O3–SiO2–ZrO2 system are discussed in comparison with the corresponding binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Claussen, N. and Jahn, J., Mechanical properties of sintered, in situ-reacted mullite-zirconia composites, J. Am. Ceram. Soc., 1980, vol. 63, nos. 3–4, pp. 228–229.

    Article  CAS  Google Scholar 

  2. Garvie, R.C., Goss, M.F., Marshall, S., and Urbani, C., Designing advanced refractories with monoclinic zirconia poycrystals, Mater. Sci. Forum, 1988, vols. 34–36, pp. 681–688.

    Google Scholar 

  3. Frank, M., Schweiger, M., Rheinberger, V., and Holand, W., High-strength translucent sintered glass-ceramic for dental restorations, Glas. Ber. Glas. Sci. Technol., 1998, vol. 71, pp. 345–348.

    Google Scholar 

  4. Höland, W., Schweiger, M., Frank, M., and Rheinberger, V., A comparison of the microstructure and properties of the IPS Empress®2 and the IPS Empress® glass-ceramics, J. Biomed. Mater. Res., 2000, vol. 53, no. 4, pp. 297–303.

    Article  Google Scholar 

  5. Barry, T.I., Cox, J.M., and Morrell, R., Cordierite glass-ceramics-effect of TiO2 and ZrO2 content on phase sequence during heat treatment, J. Mater. Sci., 1978, vol. 13, no. 3, pp. 594–610.

    Article  CAS  Google Scholar 

  6. Höland, W., Wange, P., Carl, G., Vogel, W., Heidenreich, E., and Erxleben, H., TiO2-haltige hochfeste Glaskeramiken aus dem System SiO2-Al2O3-MgO, Silikattechnik, 1984, vol. 35, no. 6, pp. 181–184.

    Google Scholar 

  7. Carl, G., Hoche, T., and Voigt, B., Crystallisation behaviour of a MgO-Al2O3-SiO2-TiO2-ZrO2 glass, Phys. Chem. Glasses, 2002, vol. 43, pp. 256–258.

    Google Scholar 

  8. Sabu, K.R.P., Rao, K.V.C., and Nair, C.G.R., A comparative study on the acidic properties and catalytic activities of TiO2, SiO2, Al2O3, SiO2-Al2O3, SiO2-TiO2, Al2O3-TiO2, and TiO2-SiO2-Al2O3, Bull. Chem. Soc. Jpn., 1991, vol. 64, no. 6, pp. 1920–1925.

    Article  CAS  Google Scholar 

  9. Chaim, R. and Talanker, V., Microstructure and mechanical properties of SiC platelet/cordierite glass-ceramic composites, J. Am. Ceram. Soc., 1995, vol. 78, no. 1, pp. 166–172.

    Article  CAS  Google Scholar 

  10. Tummala, R.R., Ceramic and glass-ceramic packaging in the 1990s, J. Am. Ceram. Soc., 1991, vol. 74, no. 5, pp. 895–908.

    Article  CAS  Google Scholar 

  11. Knickerbocker, S.H., Kumar, A.H., and Herron, L.W., Cordierite glass-ceramics for multilayer ceramic packaging, Am. Ceram. Soc. Bull., 1993, vol. 72, no. 1, pp. 90–95.

    CAS  Google Scholar 

  12. Gregory, A.G. and Veasey, T.J., The crystallisation of cordierite glass, J. Mater. Sci., 1971, vol. 6, no. 10, pp. 1312–1321.

    Article  CAS  Google Scholar 

  13. Sales, M. and Alarcon, J., Crystallization of sol-gel derived glass ceramic powders in the CaO-MgO-Al2O3-SiO2 system, J. Mater. Sci., 1995, vol. 30, no. 9, pp. 2341–2347.

    Article  CAS  Google Scholar 

  14. McCoy, M.A. and Heuer, A.H., Microstructural characterization and fracture toughness of cordierite-ZrO2 glass-ceramics, J. Am. Ceram. Soc., 1988, vol. 71, no. 8, pp. 673–677.

    Article  CAS  Google Scholar 

  15. Awano, M., Takagi, H., and Kuwahara, Y., Grinding effects on the synthesis and sintering of cordierite, J. Am. Ceram. Soc., 1992, vol. 75, no. 9, pp. 2535–2540.

    Article  CAS  Google Scholar 

  16. Andersson, J.O., Helander, T., Hoglund, L., Shi, P., and Sundman, B., Thermo-calc & DICTRA, computational tools for materials science, CALPHAD, 2002, vol. 26, no. 2, pp. 273–312.

    Article  CAS  Google Scholar 

  17. Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melancon, J., Pelton, A.D., and Petersen, S., Factsage thermochemical software and databases, CALPHAD, 2002, vol. 26, no. 2, pp. 189–228.

    Article  CAS  Google Scholar 

  18. Ansara, I., Aims and achievements of the scientific group thermodata Europe, in Thermodynamic Modeling and Materials Data Engineering, Caliste, J.-P., Ed., Berlin: Springer, 1998, pp. 33–38.

    Google Scholar 

  19. Bakardjieva, S., Barrachin, M., Bechta, S., Bottomley, D., Brissoneau, L., Cheynet, B., Fischer, E., Journeau, C., Kiselova, M., and Mezentseva, L., Improvement of the European thermodynamic database nuclea, Prog. Nucl. Energy, 2010, vol. 52, no. 1, pp. 84–96.

    Article  CAS  Google Scholar 

  20. Toropov, N.A., Barzakovskii, V.P., Lapin, V.V., and Kurtseva, N.N., Diagrammy sostoyaniya silikatnykh sistem. Spravochnik. Vyp. 1. Dvoinye sistemy (State Diagrams of Silicate Systems, The Reference Book, No. 1: Binary Systems), 2nd ed., Toropov, N.A., Ed., Leningrad: Nauka, 1969.

    Google Scholar 

  21. Levin, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists, Ohio: Am. Ceram. Soc., 1964.

    Google Scholar 

  22. Cevales, G., Das zustandsdiagramm Al2O3-ZrO2 und die Bestimmung einer neuen Hochtemperaturphase (ε-Al2O3), Ber. Dtsch. Keram. Ges., 1968, vol. 45, no. 5, pp. 216–219.

    CAS  Google Scholar 

  23. Alper, A.M., McNally, R.N., and Doman, R.C., Phase equilibria in the Al2O3-ZrO2 system, Am. Ceram. Soc. Bull., 1964, vol. 43, no. 9, pp. 643–645.

    Google Scholar 

  24. Fischer, G.R., Manfredo, L.J., McNally, R.N., and Doman, R.C., The eutectic and liquidus in the Al2O3-ZrO2 system, J. Mater. Sci., 1981, vol. 16, no. 12, pp. 3447–3451.

    Article  CAS  Google Scholar 

  25. Lakiza, S.M. and Lopato, L.M., Stable and metastable phase relations in the system alumina-zirconia-yttria, J. Am. Ceram. Soc., 1997, vol. 80, no. 4, pp. 893–902.

    Article  CAS  Google Scholar 

  26. Ball, R.G.J., Mignanelli, M.A., Barry, T.I., and Gisby, J.A., The calculation of phase equilibria of oxide core-concrete systems, J. Nucl. Mater., 1993, vol. 201, pp. 238–249.

    Article  CAS  Google Scholar 

  27. Wang, T. and Jin, Z., Thermodynamic assessment of the ZrO2-AlO1.5 system, J. Cent. South Univ. Technol., 1997, vol. 4, no. 2, pp. 108–112.

    Article  Google Scholar 

  28. Fabrichnaya, O. and Aldinger, F., Assessment of thermodynamic parameters in the system ZrO2-Y2O3-Al2O3, Zeitschr. Met., 2004, vol. 95, no. 1, pp. 27–39.

    CAS  Google Scholar 

  29. Lakiza, S., Fabrichnaya, O., Zinkevich, M., and Aldinger, F., On the phase relations in the ZrO2-YO1.5-AlO1.5 system, J. Alloys Compd., 2006, vol. 420, nos. 1–2, pp. 237–245.

    Article  CAS  Google Scholar 

  30. Fabrichnaya, O., Lakiza, S., Wang, C., Zinkevich, M., and Aldinger, F., Assessment of thermodynamic functions in the ZrO2-La2O3-Al2O3 system, J. Alloys Compd., 2008, vol. 453, nos. 1–2, pp. 271–281.

    Article  CAS  Google Scholar 

  31. Saunders, N. and Miodownik, A.P., CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Cahn, R.W., Ed., Pergamon Materials Series, Oxford: Pergamon, 1998, vol. 1.

    Google Scholar 

  32. Bowen, N.L. and Greig, J.W., The system: Al2O3-SiO2, J. Am. Ceram. Soc., 1924, vol. 7, no. 4, pp. 238–254.

    Article  CAS  Google Scholar 

  33. Toropov, N.A. and Galakhov, F.Ya., New data about Al2O3-SiO2 system, Dokl. Akad. Nauk SSSR, 1951, vol. 78, no. 2, pp. 299–302.

    CAS  Google Scholar 

  34. Toropov, N.A. and Galakhov, F.Ya., On the question of mullite, in Voprosy petrografii i mineralogii AN SSSR (Problems of Petrography and Mineralogy of the USSR Academy of Sciences), Afanas’ev, G.D., Ed., Moscow: Akad. Nauk SSSR, 1953, vol. 2, pp. 245–255.

  35. Toropov, N.A. and Galakhov, F.Ya., Solid solutions in Al2O3-SiO2 system, Izv. Akad. Nauk SSSR, Ser. Khim., 1958, no. 1, pp. 8–11.

  36. Aramaki, S. and Roy, R., Revised phase diagram for the system Al2O3-SiO2, J. Am. Ceram. Soc., 1962, vol. 45, no. 5, pp. 229–242.

    Article  CAS  Google Scholar 

  37. Mao, H., Selleby, M., and Sundman, B., Phase equilibria and thermodynamics in the Al2O3-SiO2 system-modeling of mullite and liquid, J. Am. Ceram. Soc., 2005, vol. 88, no. 9, pp. 2544–2551.

    Article  CAS  Google Scholar 

  38. Li, Y., Liu, C., Zhang, T., Jiang, M., and Peng, C., Thermodynamic assessment of Al2O3-SiO2-Ce2O3 system, Metall. Res. Technol., 2017, vol. 114, no. 3, p. 304.

    Article  CAS  Google Scholar 

  39. Ban, T., Hayashi, S., Yasumori, A., and Okada, K., Calculation of metastable immiscibility region in the Al2O3-SiO2 system, J. Mater. Res., 1996, vol. 11, no. 6, pp. 1421–1427.

    Article  CAS  Google Scholar 

  40. Takei, T., Kameshima, Y., Yasumori, A., and Okada, K., Calculation of metastable immiscibility region in the Al2O3-SiO2 system using molecular dynamics simulation, J. Mater. Res., 2000, vol. 15, no. 1, pp. 186–193.

    Article  CAS  Google Scholar 

  41. Geller, R.F. and Lang, S.M., System SiO2-ZrO2, J. Am. Ceram. Soc., 1949, vol. 32, Suppl., pp. 157–159.

    Google Scholar 

  42. Toropov, N.A. and Galakhov, F.Ya., Segregation in ZrO2-SiO2 system, Izv. Akad. Nauk SSSR, Ser. Khim., 1956, no. 2, pp. 157–161.

  43. Jones, T.S., Kimura, S., and Muan, A., Phase relations in the system FeO-Fe2O3-ZrO2-SiO2, J. Am. Ceram. Soc., 1967, vol. 50, no. 3, pp. 137–142.

    Article  CAS  Google Scholar 

  44. Butterman, W.C. and Foster, W.R., Zircon stability and the ZrO2-SiO2 phase diagram, Am. Mineral., 1967, vol. 52, nos. 5–6, pp. 880–885.

    CAS  Google Scholar 

  45. Kamaev, D.N., Archugov, S.A., and Mikhailov, G.G., Study and thermodynamic analysis of the ZrO2-SiO2 system, Russ. J. Appl. Chem., 2005, vol. 78, no. 2, pp. 200–203.

    Article  CAS  Google Scholar 

  46. Kwon, S.Y. and Jung, I.H., Critical evaluation and thermodynamic optimization of the CaO-ZrO2 and SiO2-ZrO2 systems, J. Eur. Ceram. Soc., 2017, vol. 37, no. 3, pp. 1105–1116.

    Article  CAS  Google Scholar 

  47. Greca, M.C., Emiliano, J., and Segadães, A.M., Revised phase equilibrium relationships in the system Al2O3-ZrO2-SiO2, J. Eur. Ceram. Soc., 1992, vol. 9, no. 4, pp. 271–283.

    Article  CAS  Google Scholar 

  48. NUCLEA: Thermodynamic database for nuclear applications. http://thermodata.online.fr/nuclea.html. Accessed March 30, 2020.

  49. Žirnowa, N., Schmelzdiagramm des Systems ZrO2-SiO2, Zeitschr. Anorg. Allgem. Chem., 1934, vol. 218, no. 2, pp. 193–200.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research and the State Atomic Energy Corporation “Rosatom” as a part of project no. 20-21-00056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vorozhtcov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorozhtcov, V.A., Yurchenko, D.A., Almjashev, V.I. et al. Phase Equilibriums in the Al2O3–SiO2–ZrO2 System: Calculation and Experiment. Glass Phys Chem 47, 417–426 (2021). https://doi.org/10.1134/S1087659621050175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621050175

Keywords

Navigation