Skip to main content
Log in

Study of the Non-Isothermal Crystallization Kinetics of Lithium Disilicate Glass Ceramic

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The glass ceramic with the crystals of lithium disilicate Li2O · 2SiO2 (LS2) as the main crystal phase is one of the prospective materials in the field of restorative dentistry. In this study, the crystallization kinetics of LS2 glass ceramic obtained from the base glass of the system SiO2–Li2O–Al2O3–K2O–P2O5 were investigated by the non-isothermal method using differential thermal analysis at four different heating rates. The DTA curves showed different exothermic crystallization peaks over the temperature ranges of 645–683 and 807–845°C. The lithium metasilicate, Li2O · SiO2 (LS), and the lithium disilicate, crystallized over these respective temperature ranges, was established by XRD technique. The crystallization kinetic parameters were calculated by the Kissinger plot and Augis-Bennett equations for non-isothermal analysis. The calculated activation energy of crystal growth, EC1= 236 kJ/mol, EC2 = 340 kJ/mol, and the Avrami parameters, n1 = 1.46–1.67, n2 = 2.73–2.91, together with the results from SEM observations, indicated that the crystallization mechanism of LS was substantial surface crystallization while the crystallization mechanism of LS2 was dominant bulk crystallization. The calculated activation energy of glass transition was also determined EV = 516 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Avrami, M., Kinetics of phase change. III: Granulation, phase change, and microstructure, J. Chem. Phys., 1941, vol. 9, no. 2, pp. 177–184.

    Article  Google Scholar 

  2. Marghussian, V., Nano-Glass Ceramics: Processing, Properties and Applications, Oxford: William Andrew, 2015.

    Google Scholar 

  3. Lopes, A.A.S., Monteiro, R.C.C., Soares, R.S., Lima, M.M.R.A., and Fernandes, M.H.V., Crystallization kinetics of a barium–zinc borosilicate glass by a non-isothermal method, J. Alloys Compd., 2014, vol. 591, pp. 268–274.

    Article  Google Scholar 

  4. Kissinger, H.E., Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand. (U. S.), 1956, vol. 57, pp. 217–221.

    Article  Google Scholar 

  5. Ozawa, T., Kinetics of non-isothermal crystallization, Polymer, 1971, vol. 12, no. 3, pp. 150–158.

    Article  Google Scholar 

  6. Augis, J.A. and Bennett, J.E., Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method, J. Therm. Anal., 1978, vol. 13, no. 2, pp. 283–292.

    Article  Google Scholar 

  7. Ercenk, E., The crystallization kinetics of the CaO–SiO2–P2O5–MgO–Al2O3 base glass system, J. Non-Cryst. Solids, 2014, vol. 387, pp. 101–106.

    Article  Google Scholar 

  8. Goharian, P., Nemati, A., Shabanian, M., and Afshar, A., Properties, crystallization mechanism and microstructure of lithium disilicate glass-ceramic, J. Non-Cryst. Solids, 2010, vol. 356, nos. 4–5, pp. 208–214.

    Article  Google Scholar 

  9. Soares, R.S., Monteiro, R.C.C., Lima, M.M.R.A., and Silva, R.J.C., Crystallization of lithium disilicate-based multicomponent glasses—Effect of silica/lithia ratio, Ceram. Int., 2015, vol. 41, no. 1, Part A, pp. 317–324.

  10. Chaysuwan, D., Sirinukunwattana, K., Kanchanatawewat, K., Heness, G., and Yamashita, K., Machinable glass-ceramics forming as a restorative dental material, Dent. Mater. J., 2011, vol. 30, no. 3, pp. 358–367.

    Article  Google Scholar 

  11. Matsushita, K. and Sakka, S., Kinetic study on non-isothermal crystallization of glass by thermal analysis, Bull. Inst. Chem. Res., Kyoto Univ., 1981, vol. 59, pp. 159–171.

    Google Scholar 

  12. Saraswat, S., Mehta, N., and Sharma, S.D., Applicability of Augis–Bennett relation for determination of activation energy of glass transition in some Se rich chalcogenide glasses, J. Mater. Res. Technol., 2016, vol. 5, no. 2, pp. 111–116.

    Article  Google Scholar 

  13. Pashev, P.S., Bogdanov, B., and Hristov, Y., Crystallization kinetics and phase transformation of SiO2–Al2O3–P2O5–CaO–CaF2 glass, J. Univ. Chem. Technol. Metall., 2012, vol. 47, no. 4, pp. 398–402.

    Google Scholar 

  14. Holand, W. and Beall, G.H., Glass Ceramic Technology, Chichester: Wiley, 2012.

    Book  Google Scholar 

  15. Tulyaganov, D.U., Agathopoulos, S., Kansal, I., Valério, P., Ribeiro, M.J., and Ferreira, J.M.F., Synthesis and properties of lithium disilicate glass-ceramics in the system SiO2–Al2O3–K2O–Li2O, Ceram. Int., 2009, vol. 35, no. 8, pp. 3013–3019.

    Article  Google Scholar 

  16. Höland, W., Rheinberger, V., Apel, E., and van’t Hoen, C., Principles and phenomena of bioengineering with glass-ceramics for dental restoration, J. Eur. Ceram. Soc., 2007, vol. 27, nos. 2–3, pp. 1521–1526.

    Article  Google Scholar 

  17. Zheng, X., Wen, G., Song, L., and Huang, X.X., Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics, Acta Mater., 2008, vol. 56, no. 3, pp. 549–558.

    Article  Google Scholar 

  18. Wen, G., Zheng, X., and Song, L., Effects of P2O5 and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics, Acta Mater., 2007, vol. 55, no. 10, pp. 3583–3591.

    Article  Google Scholar 

  19. Huang, S., Huang, Z., Gao, W., and Cao, P., Trace phase formation, crystallization kinetics and crystallographic evolution of a lithium disilicate glass probed by synchrotron XRD technique, Sci. Rep., 2015, vol. 5, p. 9159.

    Article  Google Scholar 

  20. Höland, W., Rheinberger, V., and Schweiger, M., Control of nucleation in glass ceramics, Philos. Trans. R. Soc., A, 2003, vol. 361, no. 1804, pp. 575–589.

  21. Marotta, A., Buri, A., and Branda, F., Nucleation in glass and differential thermal analysis, J. Mater. Sci., 1981, vol. 16, no. 2, pp. 341–344.

    Article  Google Scholar 

  22. Matusita, K., Komatsu, T., and Yokota, R., Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials, J. Mater. Sci., 1984, vol. 19, no. 1, pp. 291–296.

    Article  Google Scholar 

  23. Hammetter, W.F. and Loehman, R.E., Crystallization kinetics of a complex lithium silicate glass-ceramic, J. Am. Ceram. Soc., 1987, vol. 70, no. 8, pp. 577–582.

    Article  Google Scholar 

  24. El-Meliegy, E. and van Noort, R., Glasses and Glass Ceramics for Medical Applications, New York: Springer Science, 2011.

    Google Scholar 

  25. Yekta, B.E. and Marghussian, V.K., Effect of P2O5, B2O3 and PbO on the sinterability of β.quartz solid solution and gahnite glass-ceramics, J. Mater. Sci., 2001, vol. 36, no. 2, pp. 477–483.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

HNM would like to acknowledge Ho Chi Minh City University of Technology, Vietnam National University—HCMC for providing a doctoral scholarship for her Ph.D. study.

The authors thank Asst. Prof. Duangrudee Chaysuwan and her students (KU) and Dr. Nguyen Xuan Thanh Tram (HCMUT) for the enthusiastic help in HNM’s short-term visit at Dept of Materials Engineering, Faculty of Engineering Kasetsart University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huynh Ngoc Minh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh Ngoc Minh, Vuong, B.X. & Minh, D.Q. Study of the Non-Isothermal Crystallization Kinetics of Lithium Disilicate Glass Ceramic. Glass Phys Chem 44, 524–530 (2018). https://doi.org/10.1134/S108765961901005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961901005X

Keywords:

Navigation