Skip to main content
Log in

Properties of Bismuth-Containing High-Silica Glass Depending on the Bismuth Concentration and Heat Treatment. I. Spectral-Optical Properties

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Bismuth-containing high-silica glass is synthesized by impregnating porous glass matrices in 0.01–0.5 M aqueous solutions of bismuth nitrate with the subsequent heat treatment at a temperature of 50–875°C. The dependences of the spectral-optical properties of the synthesized glass on the concentration of the doped bismuth (0.02–1.17 wt % Bi2O3) and heat treatment temperature are studied. It is found using the method of optical spectroscopy that bismuth is present in glass in different oxidation states—Bi3+, Bi2+, and \(\rm{Bi_5^{3+}}\) clusters. Near infrared spectroscopy in the 7500–4000 cm–1 frequency range reveals that an increase in the temperature results in a gradual decrease in the intensity of the absorption bands due to the vibration of hydroxyl groups and water molecules adsorbed on the surface. The glasses (T ~ 50 and 400°C) exhibit bands at 4445–4443, 4433, and 4417–4415 cm–1, which correspond to the absorption of Bi+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Firstov, S.V., Ryumkin, K.E., Khopin, V.F., Alyshev, S.V., Firstova, E.G., Mel’kumov, M.A., Gur’yanov, A.N., and Dianov, E.M., Anti-Stokes luminescence in bismuth-doped aluminoand phosphosilicate fibres under two-step IR excitation, Quantum Electron., 2016, vol. 46, no. 7, pp. 612–616.

    Article  Google Scholar 

  2. Vtyurina, D.N., Romanov, A.N., Zaramenskikh, K.S., Vasil’eva, M.N., Fattakhova, Z.T., Trusov, L.A., Loiko, P.A., and Korchak, V.N., IR luminescence of bismuth-containing centers in materials prepared by impregnation and thermal treatment of porous glasses, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 2, pp. 211–214.

    Article  Google Scholar 

  3. Firstov, S.V., Girsova, M.A., Dianov, E.M., and Antropova, T.V., Luminescent properties of thermoinduced active centers in quartz-like glass activated by bismuth, Glass Phys. Chem., 2014, vol. 40, no. 5, pp. 521–525.

    Article  Google Scholar 

  4. Girsova, M.A., Synthesis, structure and spectral-optical properties of composite materials based on silicate porous glasses containing silver halides or bismuth oxides, Cand. Sci. (Chem.) Dissertation, St. Petersburg, 2015.

    Google Scholar 

  5. Marzouk, M.A. and ElBatal, F.H., UV-visible and infrared absorption spectra of Bi2O3 in lithium phosphate glasses and effect of gamma irradiation, Appl. Phys. A, 2014, vol. 115, no. 3, pp. 903–912. doi 10.1007/s00339-013-7887-9

    Article  Google Scholar 

  6. Khonthon, S., Morimoto, S., Arai, Y., and Ohishi, Y., Redox equilibrium and NIR luminescence of Bi2O3-containing glasses, Opt. Mater., 2009, vol. 31, no. 8, pp. 1262–1268.

    Article  Google Scholar 

  7. Hashimoto, T., Shimoda, Y., Nasu, H., and Ishihara, A., ZnO-Bi2O3-B2O3 glasses as molding glasses with high refractive indices and low coloration codes, J. Am. Ceram. Soc., 2011, vol. 94, no. 7, pp. 2061–2066. doi 10.1111/j.1551-2916.2010.04383.x

    Article  Google Scholar 

  8. Antropova, T.V., Girsova, M.A., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., and Firstov, S.V., Production method of luminescent bismuth-containing quartz-like material based on high-silica porous glass, RF Patent No. 2605711, Byull. Izobret., 2016, no.36.

  9. Girsova, M.A., Firstov, S.V., and Antropova, T.V., Structural and optical properties of the bismuth-containing quartz-like glasses, J. Phys.: Conf. Ser., 2014, vol. 541, p. 012022. doi 10.1088/1742-6596/541/1/012022

    Google Scholar 

  10. Girsova, M.A., Firstov, S.V., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., Kostyreva, T.G., Polyakova, I.G., and Antropova, T.V., High-silica glasses doped with bismuth, Fiz. Khim. Stekla, 2012, vol. 38, no. 6, pp. 861–863.

    Google Scholar 

  11. Girsova, M.A., Golovina, G.F., Kurilenko, L.N., Antropova, T.V. Synthesis and study of bismuth-containing high-silica glass by the IR spectroscopy method, Glass Phys. Chem., 2015, vol. 41, no 1, pp. 93–97.

    Article  Google Scholar 

  12. Zhou, S., Jiang, N., Zhu, B., Yang, H., Ye, S., Lakshminarayana, G., Hao, J., and Qiu, J., Multifunctional bismuth-doped nanoporous silica glass: from bluegreen, orange, red, and white light sources to ultrabroadband infrared amplifiers, Adv. Funct. Mater., 2008, vol. 18, no. 9, pp. 1407–1413.

    Article  Google Scholar 

  13. Fan, X., Su, L., Ren, G., Jiang, X., Xing, H., Hu, J., Tang, H., Li, H., Zheng, L., Qian, X., and Feng, H., Influence of thermal treatment on the near-infrared broadband luminescence of Bi:CsI crystals, Opt. Mater. Express, 2013, vol. 3, no. 3, pp. 400–406.

    Article  Google Scholar 

  14. Romanov, A.N., Fattakhova, Z.T., Veber, A.A., Usovich, O.V., Haula, E.V., Korchak, V.N., Tsvetkov, V.B., Trusov, L.A., Kazin, P.E., and Sulimov, V.B., On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+ and cluster Bi5 3+ luminescence in AlCl3/ZnCl2/BiCl3 chloride glass, Opt. Express, 2012, vol. 20, no. 7, pp. 7212–7220.

    Article  Google Scholar 

  15. Hamstra, M.A., Folkerts, H.F., and Blasse, G., Red bismuth emission in alkaline-earth-metal sulfates, J. Mater. Chem., 1994, vol. 4, no. 8, pp. 1349–1350.

    Article  Google Scholar 

  16. Little, L.H., Infrared Spectra of Adsorbed Molecules, London: Academic, 1966.

    Google Scholar 

  17. Kiryutenko, V.M., Kiselev, A.V., Lygin, V.I., and Shchepalin, K.L., Study of the surface properties of porous glass by infrared spectroscopy, Kinet. Katal., 1974, vol. 15, no. 6, pp. 1584–1588.

    Google Scholar 

  18. Gavrilko, T., Gnatyuk, I., Puchkovska, G., Baran, J., Marchewka, M., and Morawska-Kowal, T., Application of NIR spectroscopic method to the study of porous glasses filled with liquid crystals, Opt. Appl., 2003, vol. 33, no. 1, pp. 23–32.

    Google Scholar 

  19. Schmidt, B.C., Effect of boron on the water speciation in (alumino)silicate melts and glasses, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 24, pp. 5013–5025. doi 10.1016/j.gca.2004.06.036

    Article  Google Scholar 

  20. Zotov, N. and Keppler, H., The influence of water on the structure of hydrous sodium tetrasilicate glasses, Am. Mineralog., 1998, vol. 83, nos. 7–8, pp. 823–834.

    Article  Google Scholar 

  21. Bauer, U., Behrens, H., Reinsch, S., Morin, E.I., and Stebbins, J.F., Structural investigation of hydrous sodium borosilicate glasses, J. Non-Cryst. Solids, 2017, vol. 465, pp. 39–48.

    Article  Google Scholar 

  22. Davis, K.M., Agarwal, A., Tomozawa, M., and Hirao, K., Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass, J. Non-Cryst. Solids, 1996, vol. 203, pp. 27–36.

    Article  Google Scholar 

  23. Wu, C.-K., Nature of incorporated water in hydrated silicate glasses, J. Am. Ceram. Soc., 1980, vol. 63, nos. 7–8, pp. 453–457.

    Article  Google Scholar 

  24. Plotnichenko, V.G., Philippovskiy, D.V., Sokolov, V.O., Golovanov, V.F., Polyakova, G.V., Lisitsky, I.S., and Dianov, E.M., Infrared luminescence in bismuth-doped AgCl crystals, Opt. Lett., 2013, vol. 38, no. 16, pp. 2965–2968. https://doi.org/10.1364/OL.38.002965

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Girsova.

Additional information

Original Russian Text © M.A. Girsova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko, 2018, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girsova, M.A., Golovina, G.F., Anfimova, I.N. et al. Properties of Bismuth-Containing High-Silica Glass Depending on the Bismuth Concentration and Heat Treatment. I. Spectral-Optical Properties. Glass Phys Chem 44, 381–387 (2018). https://doi.org/10.1134/S1087659618050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659618050061

Keywords

Navigation