Skip to main content
Log in

Atomic Structure of the Amorphous Metallic Alloy Al83.5Ni9.5Si1.4La5.6

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The atomic structure of the amorphous metallic alloy Al83.5Ni9.5Si1.4La5.6 is investigated based on the analysis of the experimental atomic radial distribution function (ARDF) in the fragmentary model. A comparative analysis of the most probable interatomic distances in the alloy and possible compounds based on it has demonstrated the presence of crystalline nuclei of the following phases: Al3La, Al3Ni, Al2.12La0.88, Al3Ni5, and Al. The largest ones (1–2 nm) are nuclei of the Al3Ni and Al compound, while the majority nuclei of all the other phases had sizes of about 7 Å. Al and Al3Ni, as well as Al11La3 and Al5.56LaNi1.44 are observed in the crystallized alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luzgin, D.V. and Inoue, A., Bulk metallic glasses. Formation, structure, properties, and applications, in Handbook of Magnetic Materials, Buschow, K.H.J., Ed., Amsterdam: Elsevier, 2013, vol. 21, pp. 131–171.

  2. Sudzuki, K., Fudzimori, Kh., and Khasimoto, K., Amorfnye metally (Amorphous Metals), Moscow: Metallurgiya, 1987.

    Google Scholar 

  3. Glezer, A.M., Creation principles of new-generation multifunctional structural materials, Phys. Usp., 2012, vol. 55, no. 5, pp. 522–529.

    Article  Google Scholar 

  4. Minaev, V.S., Timoshenkov, S.P., and Kalugin, V.V., Nanogeteromorfnaya struktura i relaksatsiya nekristallicheskogo veshchestva: uchebnoe posobie (Nanoheteromorphous Structure and Relaxation of Non-Crystalline Matter State, The School-Book), Moscow: MIET, 2010.

    Google Scholar 

  5. Aleinikova, K.B., Zinchenko, E.N., and Likhach, N.I., Diffraction methods for analysing nanodispersed materials, Zavod. Lab., Diagn. Mater., 2005, vol. 71, no. 4, pp. 27–31.

    Google Scholar 

  6. Aleynikova, K.B. and Zinchenko, E.N., Fragment model as a phase analysis method for diffraction amorphous materials, J. Struct. Chem., 2009, vol. 50, suppl., pp. S93–S99.

    Article  Google Scholar 

  7. Vainshtein, B.K., To the theory of radial distribution method, Sov. Phys. Crystallogr., 1957, vol. 2, no. 1, pp. 24–31.

    Google Scholar 

  8. Aleinikova, K.B. and Likhach, N.I., Fragmentary model as applied to analysis of spectroscopically pure vitreous SiO2, Glass Phys. Chem., 2005, vol. 31, no. 5, pp. 648–660.

    Article  Google Scholar 

  9. Aleynikova, K.B., Zmeykin, A.A., Zinchenko, E.N., and Ievlev, V.M., Analysis of the atomic structure of metallic glass of composition Al87Ni10Nd3 with the use of a fragmentary model, Glass Phys. Chem., 2012, vol. 38, no. 1, pp. 71–76.

    Article  Google Scholar 

  10. Nabitovich, I.D., Stetsiv, Ya.I., and Voloshchuk, Ya.V., Determination of the coherent and background intensity from the experimental electron scattering curve, Sov. Phys. Crystallogr., 1967, vol. 12, no. 4, pp. 513–516.

    Google Scholar 

  11. Havinga, E.E., Influence of repulsive energy on structural parameters of close-packed metal structures, J. Less-Common Met., 1975, vol. 41, pp. 241–254.

    Article  Google Scholar 

  12. Tonejc, A., Rocak, D., and Bonefacic, A., Mechanical and structural properties of al-ni alloys rapidly quenched from the melt, Acta Metall., 1971, vol. 19, pp. 311–316.

    Article  Google Scholar 

  13. Buschow, K.H.J., The lantanum-aluminium system, Philips Res. Rep., 1965, vol. 20, pp. 337–348.

    Google Scholar 

  14. Enami, K. and Nenno, S., New ordered phase in tempered 63.8 Ni-1Co-Al martensite, Trans. Jpn. Inst. Met., 1978, vol. 19, pp. 571–580.

    Article  Google Scholar 

  15. ICDD, PDF-2, no. 00-024-0501.

  16. ICDD, PDF-2, no. 00-002-0416.

  17. ICDD, PDF-2, no. 01-073-3304.

  18. Gomes de Mesquita, A.H., and Buschow, K.H.J., The crystal structure of so-called α-LaAl4 (La3A11), Acta Crystallogr., 1967, vol. 22, pp. 497–501.

    Article  Google Scholar 

  19. Gout, D., Bendow, E., Gourdon, O., and Miller, G., Composition-structure relationships in polar intermetallics: experimental and theoretical studies of La Ni (1 + x) Al (6–x) (x = 0.44), Inorg. Chem., 2004, vol. 43, pp. 4604–4609.

    Article  Google Scholar 

  20. Aleinikova, K.B. and Zmeikin, A.A., Fragmentary model and atomic structure of amorphous alloy Al83Ni10La7, Vestn. Voronezh. Univ., 2009, no. 1, pp. 5–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Aleinikova.

Additional information

Original Russian Text © K.B. Aleinikova, E.N. Zinchenko, A.A. Zmeikin, 2018, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleinikova, K.B., Zinchenko, E.N. & Zmeikin, A.A. Atomic Structure of the Amorphous Metallic Alloy Al83.5Ni9.5Si1.4La5.6. Glass Phys Chem 44, 307–313 (2018). https://doi.org/10.1134/S108765961804003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961804003X

Keywords

Navigation