Skip to main content
Log in

Imperfections of Kissinger evaluation method and crystallization kinetics

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The famous Kissinger’s kinetic evaluation method (Anal. Chem. 1957) is examined with respect to: a) the relation between the DTA signal θ (t) and the reaction rate r(t) ≡ dα/dt; b) the requirements on reaction mechanism model f(α); and c) the relation of starting kinetic equation to the equilibrium behavior of sample under study. Distorting effect of heat inertia and difference between the temperature T p of extreme DTA deviation and the temperature T m at which the reaction rate is maximal are revealed. The kinetic equations respecting the influence of equilibrium temperature T eq , especially fusion temperature T f , are tested as bases for a modified Kissinger-like evaluation of kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials by Differential Scanning Calorimetry Using Kissinger Method, West Conshohocken, Pennsylvania, United States: American Society for Testing and Materials (ASTM) International, 2001.

  2. Murray, P. and White, J., Kinetics of the thermal decomposition of clay: Part 4. Interpretation of DTA to thermal analysis of clays, Trans. Br. Ceram. Soc., 1955, vol. 54, pp. 204–237.

    Google Scholar 

  3. Šesták, J., Review of kinetic data evaluation from nonisothermal and isothermal data, Silikaty (Prague), 1967, vol. 11, pp. 153–190.

    Google Scholar 

  4. Šesták, J., Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis, Amsterdam, The Netherlands: Elsevier, 2005.

    Google Scholar 

  5. Kissinger, H.E., Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand., 1956, vol. 57, pp. 217–221.

    Article  Google Scholar 

  6. Kissinger, H.E., Reaction kinetics in differential thermal analysis, Anal. Chem., 1957, vol. 29, pp. 1702–1706.

    Article  Google Scholar 

  7. Matusita, K. and Sakka, S., Kinetic study of crystallization by DTA: Criterion and application of Kissinger plot, J. Non-Cryst. Solids, 1978, vol. 39, pp. 741–746.

    Google Scholar 

  8. Matusita, K. and Sakka, S., Kinetic study of crystallization of glass by differential thermal analysis-Criterion on application of Kissinger plot, Phys. Chem. Glasses, 1979, vol. 20, pp. 81–84.

    Google Scholar 

  9. Augis, J.A. and Bennet, J.E., Calculation of Avrami parameters for heterogeneous solid-state reactions using a modification of Kissinger method, J. Therm. Anal., 1978, vol. 13, pp. 283–292.

    Article  Google Scholar 

  10. Balarin, M., Is Kissinger’s rule true? Thermochim. Acta, 1979, vol. 33, pp. 341–343.

    Article  Google Scholar 

  11. Boswell, P.G., On the calculation of activation energies using a modified Kissinger method, J. Therm. Anal., 1980, vol. 18, pp. 353–358.

    Article  Google Scholar 

  12. Elder, J.P., The general applicability of the Kissinger equation in thermal analysis, J. Therm. Anal., 1985, vol. 30, pp. 657–669.

    Article  Google Scholar 

  13. Criado, J.M. and Ortega, A., Nonisothermal transformation kinetics in relation to Kissinger method, J. Non-Cryst. Solids, 1988, vol. 87, pp. 302–311.

    Article  Google Scholar 

  14. Llópiz, J., Romero, M.M., Jerez, A., and Laureiro, Y., Generalization of the Kissinger equation for several kinetic models, Thermochim. Acta, 1995, vol. 256, pp. 205–211.

    Article  Google Scholar 

  15. Sánchez-Jiménez, P.E., Criado, J.M., Pérez-Maqueda, L.A., Kissinger kinetic analysis of data obtained under different heating schedule, J. Therm. Anal. Calorim., 2008, vol. 94, pp. 427–432.

    Article  Google Scholar 

  16. Agresti, F., An extended Kissinger equation for near-equilibrium solid-gas heterogeneous transformations, Thermochim. Acta, 2013, vol. 566, pp. 214–217.

    Article  Google Scholar 

  17. Mehta, M. and Kumar, A., Applicability of Kissinger relation in the determination of activation energies of glass transition processes, J. Optoelectron. Adv. Mater., 2007, vol. 7, pp. 1473–1478.

    Google Scholar 

  18. Soliman, A.A., Derivation of the Kissinger equation for non-isothermal glass transition peaks, J. Therm. Anal. Calorim., 2005, vol. 89, pp. 389–392.

    Article  Google Scholar 

  19. Budrugeac, P. and Segal, E., Applicability of the Kissinger equation in thermal analysis, J. Therm. Anal. Calorim., 2007, vol. 88, pp. 703–707.

    Article  Google Scholar 

  20. Yi, C., Yanchun, L., and Yunlong, H., Supplement on applicability of the Kissinger equation in thermal analysis, J. Therm. Anal. Calorim., 2010, vol. 102, pp. 605–608.

    Article  Google Scholar 

  21. Koga, N. and Criado, J.M., Application of the Kissinger method to solid-state reactions with a particle size distribution, J. Min. Metall., Sect. B, 1999, vol. 35, nos. 2–3, pp. 171–185.

    Google Scholar 

  22. Budrugeac, P., The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters, J. Therm. Anal. Calorim., 2007, vol. 89, pp. 143–151.

    Article  Google Scholar 

  23. Roura, P. and Farjas, J., Analytical solution for the Kissinger equation, J. Mater. Res., 2009, vol. 24, pp. 3095–3098.

    Article  Google Scholar 

  24. Mouchina, E. and Kaisersberger, E., Temperature dependence of the time constants for deconvolution of heat flow curves, Thermochim. Acta, 2009, vol. 492, pp. 101–109.

    Article  Google Scholar 

  25. Illeková, E., On the various activation energies at crystallization of amorphous metallic materials, J. Non-Cryst. Solids, 1984, vol. 68, pp. 153–160.

    Article  Google Scholar 

  26. Šesták, J., Citation records and some forgotten anniversaries in thermal analysis, J. Therm. Anal. Calorim., 2012, vol. 109, pp. 1–5.

    Article  Google Scholar 

  27. Šesták, J. and Berggren, G., Study of the kinetics of the mechanism of solid-state reactions at increasing temperature, Thermochim. Acta, 1971, vol. 3, pp. 1–12.

    Article  Google Scholar 

  28. Šimon, P., Forty years of Šesták-Berggren equation, Thermochim. Acta, 2011, vol. 520, pp. 156–157.

    Article  Google Scholar 

  29. Mianowski, A., The Kissinger law and isokinetic effect: Most common solution and thermokinetic equation, J. Therm. Anal. Calorim., 2004, vol. 74, pp. 955–973.

    Google Scholar 

  30. Illeková, E. and Šesták, J., Crystallization of metallic micro-, nano-, and non-crystalline glasses, in Thermal Analysis of Micro-, Nano-, and Non-Crystalline Materials, Šesták, J. and Šimon, P., Eds., Berlin: Springer-Verlag, 2013, chapter 13, pp. 257–290.

    Google Scholar 

  31. Šesták, J., Kozmidis-Petrović A., and Živković, Ž., Crystallization kinetics accountability and the correspondingly developed glass-forming criteria, J. Min. Metall., Sect. B, 2011, vol. 47, no. 2, pp. 229–239.

    Article  Google Scholar 

  32. Koga, N., Šesták, J., and Šimon, P., Some fundamental and historical aspects of phenomenological kinetics in solid-state studied by thermal analysis, in Thermal Analysis of Micro-, Nano-, and Non-Crystalline Materials, Šesták, J. and Šimon, P., Eds., Berlin: Springer-Verlag, 2013, chapter 1, pp. 1–45.

    Google Scholar 

  33. Šesták, J., Nonisothermal kinetics by thermal analysis, in Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis, Amsterdam, The Netherlands: Elsevier, 2005, chapter 11, pp. 318–343.

    Google Scholar 

  34. Svoboda, R., Čičmanec, P., Málek, J., Kissinger equation versus glass transition phenomenology, J. Therm. Anal. Calorim., 2013, vol. 114, pp. 285–293.

    Article  Google Scholar 

  35. Šesták, J., Phenomenology of glass crystallization, in Kinetic Phase Diagrams: Nonequilibrium Phase Transitions, Chvoj, Z., Šesták, J., and Tříska, A., Eds., Amsterdam, The Netherlands: Elsevier, 1991.

    Google Scholar 

  36. Šesták, J., Rationale and fallacy of thermoanalytical kinetic patterns: How we model subject matter, J. Therm. Anal. Calorim., 2012, vol. 110, pp. 5–16.

    Article  Google Scholar 

  37. Holba, P., Equilibrium background of processes initiated by heating and the Ehrenfest classification of phase transitions, in Thermal Analysis of Micro-, Nano-, and Non-Crystalline Materials, Šesták, J. and Šimon, P., Eds., Berlin: Springer-Verlag, 2013, chapter 2, pp. 29–52.

    Google Scholar 

  38. Holba, P. and Šesták, J., Kinetics with regard to the equilibrium of processes studied by non-isothermal techniques, Z. Phys. Chem. (Muenchen, Ger.), 1972, vol. 80, pp. 1–20.

    Article  Google Scholar 

  39. Holba, P., Nevřiva, M., and Šesták, J., Utilization of DTA for the determination of heats of the transformation of solid-solutions Mn3O4-Mn2CrO4, Izv. AN SSSR, Neorg. Mater., 1974, vol. 10, pp. 2007–2008.

    Google Scholar 

  40. Holba, P., Nevřiva, M., and Šesták, J., Analysis of DTA curve and related calculation of kinetic data using computer technique, Thermochim. Acta, 1978, vol. 23, pp. 223–231.

    Article  Google Scholar 

  41. Holba, P., Šesták, J., and Sedmidubsky, D., Heat transfer and phase transition at DTA experiments, in Thermal Analysis of Micro-, Nano-, and Non-Crystalline Materials, Šesták, J. and Šimon, P., Eds., Berlin: Springer-Verlag, 2013, chapter 5, pp. 99–134.

    Google Scholar 

  42. Šesták, J. and Holba, P., Heat inertia and temperature gradient in the treatment of DTA peaks existing on every occasion of real measurements but until now omitted, J. Therm. Anal. Calorim., 2013, vol. 113, pp. 1633–1643.

    Article  Google Scholar 

  43. Vold, M.J., Differential thermal analysis, Anal. Chem., 1949, vol. 21, pp. 683–688.

    Article  Google Scholar 

  44. Chen, R. and Kirsh, Y., Analysis of Thermally Stimulated Processes, Oxford: Pergamon Press, 1981, pp. 109–110.

    Google Scholar 

  45. Schultze, D., Differentialthermoanalyze, Berlin: VEB, 1969 [in German].

    Google Scholar 

  46. Smykats-Kloss, W., Differential Thermal Analysis, Berlin: Springer-Verlag, 1974.

    Book  Google Scholar 

  47. Pope, M.I. and Judd, M.D., Differential Thermal Analysis, London: Heyden, 1977.

    Google Scholar 

  48. Höhne, G.W.H., Hemminger, W., and Flammersheim, H.J., Differential Scanning Calorimetry, Dortrecht, The Netherlands: Springer-Verlag, 2010.

    Google Scholar 

  49. Egunov, V.P., Vvedenie v termicheskii analiz (Introduction to Thermal Analysis), Samara: Samara State Technical University, 1996 [in Russian].

    Google Scholar 

  50. Borchard, H.J. and Daniels, F., The application of DTA to the study of reaction kinetics, J. Am. Chem. Soc., 1957, vol. 79, pp. 41–46.

    Article  Google Scholar 

  51. Blumberg, A.A., DTA and heterogeneous kinetics: The reactions of vitreous silica with HF, J. Phys. Chem., 1959, vol. 63, pp. 1129–1132.

    Article  Google Scholar 

  52. Piloyan, G.O., Vvedenie v teoriyu termicheskogo analiza (Introduction in the Theory of Thermal Analysis), Moscow: Nauka, 1964 [in Russian].

    Google Scholar 

  53. Piloyan, G.O., Ryabchikov, I.O., and Novikova, S.O., Determination of activation energies of chemical reactions by DTA, Nature, 1966, vol. 3067, p. 1229.

    Article  Google Scholar 

  54. Boerio-Goates, J. and Callen, J.E., in Differential Thermal Methods: Chapter. Determination of Thermodynamic Properties, Rossiter, B.W. and Beatzold, R.C., Eds., New York: Wiley, 1992, pp. 621–718.

  55. Šesták, J., Differential thermal analysis, in Thermophysical Properties of Solids: A Theoretical Thermal Analysis, Amsterdam, The Netherlands: Elsevier, 1984, chapter 12. Translated under the title Teoriya termicheskogo analiza, Moscow: Mir, 1988, pp. 312–350.

    Google Scholar 

  56. Vyazovkin, S., Is the Kissinger equation applicable to the processes that occur on cooling? Macromol. Rapid Commun., 2002, vol. 23, pp. 771–775.

    Article  Google Scholar 

  57. Sunol, J.J., Berlanga, R., Clavaguera-Mora, M.T., and Clavaguera, N., Modelling crystallization processes and transformation diagrams, Acta Mater., 2002, vol. 50, pp. 4783–4790.

    Article  Google Scholar 

  58. Turnbull, D., Under what conditions can a glass be formed? Contemp. Phys., 1969, vol. 10, pp. 473–488.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Holba.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holba, P., Šesták, J. Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys Chem 40, 486–495 (2014). https://doi.org/10.1134/S1087659614050058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659614050058

Keywords

Navigation