Skip to main content
Log in

The Tumannoe Gold–Antimony Occurrence (East Sayan, Russia): Mineralogy, Fluid Inclusions, S and O Isotopes, and U–Pb and 40Ar/39Ar Age

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The article discusses the features of the composition, age, and genesis of gold–antimony mineralization of the East Sayan based on the example of the largest Tumannoe ore occurrence. It is shown that objects of this type are rare in the considered region. In the course of studies, it was found that stibnite, pyrite, and arsenopyrite predominate in ores; Bi minerals (tetradymite, cobaltite, native Bi), antimonides and sulfosalts (zinkenite, chalcostibite, aurostibite, tetrahedrite, and andorite), and three generations of native gold are also present. The mineralization contains gold–bismuth and gold–antimony ore assemblages, which are the evolutionary products of a single ore-forming system, during which a sequential decrease in the PTX parameters of ore deposition occurred, where temperatures decreased from more than 380 to 180°С. Sulfur activity decreased during ore deposition, which led to the deposition of alternating ore assemblages from simple sulfides to sulfosalts, in the direction of increasing deposited components, and to the formation of different generations of native gold with a gradual increase in fineness from early to late assemblages. The results of mineralogical–genetic and isotope–geochemical studies evidence the magmatogenic nature of gold–antimony mineralization. The isotopic age of parent granitoids, obtained by LA-ICP-MS zircon dating, is Early Ordovician; age values are 491–486 Ma. 40Ar/39Ar dating of muscovite from ore veins shows a relatively young age value (439 Ma), which is due to the influence of late tectonic and thermal events associated with the Early Paleozoic orogeny occurred at that time throughout the territory of the present-day East Sayan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. V.S. Grachev, Yu. I. Nemchinov, Yu.A. Larev, I.P. Sgudeev, V.S. Lunkova, and L.A. Borodina, Geological Structure and Mineral Resources of the Sentsa–Tissa Interfluve (East Sayan), Report on the Work of the Shutkhulai GSP for 1966–1968, vol. 1., Ulan-Ude, 1969.

REFERENCES

  1. Ashley, P.M. and Craw, D., Structural controls on hydrothermal alteration and gold-antimony mineralization in the Hillgrove area, NSW, Australia, Miner. Deposita, 2004, vol. 39, pp. 223–239.

    Article  Google Scholar 

  2. Baksi, A.K., Archibald, D.A., and Farrar, E., Intercalibration of 40Ar/39Ar dating standards, Chem. Geol., 1996, vol. 129, pp. 307–324.

    Article  Google Scholar 

  3. Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for H2O–NaCl fluid inclusions, Fluid Inclusions in Minerals, Methods and Applications, De Vivo, B. and Frezzotti, M. L., Eds., Virginia Tech, Blacksburg, 1994, pp. 117–130.

    Google Scholar 

  4. Borisenko, A.S., Cryometric study of salt composition of solutions of gas–liquid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–27.

  5. Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., Prokof’ev, V.Yu., and Prokop’ev, A.V., The Sarylakh and Sentachan gold–antimony deposits, Sakha-Yakutia: a case of combined mesothermal gold–quartz and epithermal stibnite ores, Geol. Ore Deposits, 2010, vol. 52, no. 5, pp. 339–372.

    Article  Google Scholar 

  6. Damdinov, B.B., Mineral types of gold deposits and regularities of their localization in southeastern East Sayan, Geol. Ore Deposits, 2019, vol. 61, no. 2, pp. 118–132.

    Article  Google Scholar 

  7. Damdinov, B.B. Garmaev, B.L., Mironov, A.G., and Dashinimaev, Z.B., Gold–bismuth mineralization in the southeastern part of the Eastern Sayan, Dokl. Earth Sci., 2009, vol. 425, no. 2. pp. 256–259.

    Article  Google Scholar 

  8. Damdinov, B.B., Zhmodik, S.M., Roshchektaev, P.A., Damdinova, L.B., Composition and genesis of the Konevinsky gold deposit, Eastern Sayan, Russia, Geol. Ore Deposit, 2016, vol. 58, no. 2, pp. 134–148.

    Article  Google Scholar 

  9. Damdinov, B.B., Zhmodik, S.M., Travin, A.V., Yudin, D.S., and Goryachev, N.A., New data on the age of gold mineralization in the southeastern part of Eastern Sayan, Dokl. Earth Sci., 2018, vol. 479, no. 2, pp. 420–428.

    Article  Google Scholar 

  10. Damian, G., The genesis of the base metal ore deposit from Herja, Studia Universitatis Babes-Bolyai,Geologia, 2003, vol. 48, no. 1, pp. 85–100.

    Article  Google Scholar 

  11. Dobretsov, N.L., Nappe tectonics of Eastern Sayan, Geotektonika, 1985, no. 1, pp. 39–50.

  12. Fedotova, A.A. and Khain, E.V., Tektonika yuga Vostochnogo Sayana i ego polozhenie v Uralo-Mongol’skom poyase (Tectonics of the Southern Eastern Sayan and its Position in the Ural–Mongolian Belt), Moscow: Nauchnyi mir, 2002.

  13. Garmaev, B.L., Damdinov, B.B., and Mironov, A.G., Pogranichnoe Au–Bi occurrence, Eastern Sayan: composition and link to magmatism, Geol. Ore Deposits, 2013, vol. 55, no. 6, pp. 455–466.

    Article  Google Scholar 

  14. Geologiya i metamorfizm Vostochnogo Sayana (Geology and Metamorphism of Eastern Sayan), Belichenko, V.G., Butov, Yu.P., Dobretsov, N.L., et al., Novosibirsk: Nauka. Sib. otdelenie, 1988.

  15. Geologiya i rudonosnost' Vostochnogo Sayana (Geology and Ore Potential of Eastern Sayan), Dobretsov, N.L., Belichenko, V.G., Boos, R.G., Novosibirsk: Nauka. Sib. Otd., 1989.

    Google Scholar 

  16. Gordienko, I. V., Roshchektaev, P. A., and Gorokhovskii, D. V. Oka ore district of the Eastern Sayan: geology, structural–metallogenic zonation, genetic types of ore deposits, their geodynamic formation conditions, and outlook for development, Geol. Ore Deposits, 2016, vol. 58, no. 5, pp. 361–382.

    Article  Google Scholar 

  17. Goryachev, N.A. and Gamyanin, G.N., Gold–bismuth (gold–rare-metal) deposits of Northeastern Russia: types and prospects of economic development, Zoloto Sibiri i Dal’nego Vostoka: geologiya, geokhimiya, tekhnologiya, ekonomika, ekologiya: Tr. III vserossiiskogo simpoziuma (Gold of Siberia and Far East: Geology, Geochemistry, Technology, Economics, and Ecology. Proc. 3rd All-Russian Symposium), Magadan. SVNTs DVO RAN, 2006, pp. 50–62.

  18. Groves, D.J., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F., Orogenic gold deposits: a proposed classification in the context of their crustal distributions and relationship to other gold deposits, Ore Geol. Rev., 1998, vol. 13, pp. 7–27.

    Article  Google Scholar 

  19. Hoefs, J., Stable Isotope Geochemistry, 6th Ed., Berlin–Heidelberg: Springer-Verlag, 2009

    Google Scholar 

  20. Jasinsky, A.W., Some aspects of the silver mineralization in the Hällefors region (Bergslagen, Sweden), Mineral. Mag., 1983, vol. 47, pp. 507–514.

    Article  Google Scholar 

  21. Kamzolkin, V.A., Ivanov, S.D., and Konilov, A.N., Empirical fengite geobarometer: substantiation, calibration, and application, Zap. Ross. Mineral.O-va, 2015, vol. 144, no. 5, pp. 1–14.

    Google Scholar 

  22. Kerrich, R. and Wyman, D.A., Review of development in trace-element fingerprinting of geodynamic settings and their implications for mineral exploration, Austral. J. Earth Sci., 1997, vol. 44, pp. 465–487.

    Article  Google Scholar 

  23. Khain, E.V., Bibikova, E.V., Kroner, A., Zhuravlev, D.Z., Sklyarov, E.V., Fedotova, A.A., and Kravchenko-Berezhnoy, I.R., The most ancient ophiolite of the central Asian Fold Belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications, Earth Planet. Sci. Lett., 2002, vol. 199, pp. 311–325.

    Article  Google Scholar 

  24. Khubanov, V.B., Buyantuev, M.D., and Tsygankov, A.A., U-Pb dating of zircons from Pz3–Mz igneous complexes of Transbaikalia by section-field mass-spectrometry with laser sampling: technique and comparison with SHRIMP, Russ. Geol. Geophys., 2016, vol. 57, no. 1, pp. 190–205.

    Article  Google Scholar 

  25. Kretschmar, U. and Scott, S.D., Phase relations involving arsenopyrite in the system Fe–As–S and their application, Can. Mineral., 1976, vol. 14, pp. 364–386.

    Google Scholar 

  26. Krupp, R.E., Solubility of stibnite in hydrogen sulfide solutions, speciation and equilibrium constants, from 25 to 350°C, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 3005–3015.

    Article  Google Scholar 

  27. Kuz’michev, A.B., Tektonicheskaya istoriya Tuvino-Mongol’skogo massiva: rannebaikal’skii, pozdnebaikal’skii i rannekaledonskii etapy (Tectonic History of the Tuva–Mongolia Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages), Moscow: Probel-2000, 2004.

  28. Lang, J.R. and Baker, T., Intrusion-related gold systems: the present level of understanding, Miner. Deposita, 2001, vol. 36, pp. 477–489.

    Article  Google Scholar 

  29. Lecumberri-Sanchez, P. and Bodnar, R.J., Synthetic fluid inclusions XX. Critical PTx-properties of H2O–FeCl2 fluids, Geochim. Cosmochim. Acta, 2015, vol. 148, pp. 50–61.

    Article  Google Scholar 

  30. Nekrasov, I.Ya., Geokhimiya, mineralogiya i genezis zolotorudnykh mestorozhdenii (Geochemistry, Mineralogy, and Genesis of Gold Deposits), Moscow: Nauka, 1991.

  31. Nevol’ko, P.A. and Borisenko, A.S., Antimony mineralization at the gold–sulfide deposits of Yenisei Range, Razvedka Okhr. Nedr, 2009, no. 2, pp. 11–14.

  32. Nevolko, P.A., Pham, T.D., Tran, T.H., Tran, T.A., Ngo, T.P., and Fominykh, P.A., Intrusion-related Lang Vai gold–antimony district (northeastern Vietnam): geology, mineralogy, geochemistry and 40Ar/39Ar age, Ore Geol. Rev., 2018, vol. 96, pp. 218–235.

    Article  Google Scholar 

  33. Nevolko, P.A., Pham, T.D., Fominykh, P.A., Tran, T.H., Tran, T.A., and Ngo, T.P., Origin of the intrusion-related Lang-Vai gold–antimony district (northeastern Vietnam): constraints from fluid inclusions study and C–O–S–Pb isotope systematics, Ore Geol. Rev., 2019, vol. 104, pp. 114–131.

    Article  Google Scholar 

  34. Obolensky, A.A., Gushchina, L.V., Borisenko, A.S., Borovikov, A.A., and Nevol’ko, P.A., Computer thermodynamic modeling of the transport and deposition of Sb and Au during the formation of Au–Sb deposits, Russ. Geol. Geophys., 2009, vol. 50, no. 11, pp. 950–965.

    Article  Google Scholar 

  35. Obolensky, A.A. and Obolenskaya, R.V., Gold–antimony and mercury ore formations of Yakutia, Geologiya i genezis endogennykh rudnykh formatsii Sibiri (Geology and Genesis of Endogenous Ore Formations of Siberia), Novosibirsk: Nauka, 1972, pp. 53–64.

    Google Scholar 

  36. Ohmoto, H. and Rye, R.O., Isotopes of sulfur and carbon, Geochemistry of Hydrothermal Ore Deposits, 2nd Ed., New York: Wileys, 1979, pp. 509–567.

    Google Scholar 

  37. Pearce, J., Harris, N., and Tindle, A., Trace element discrimination diagram for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.

    Article  Google Scholar 

  38. Rudnev, S.N., Rannepaleozoiskii granitoidnyi magmatizm Altae-Sayanskoi skladchatoi oblasti i Ozernoi zony Zapadnoi Mongolii (Early Paleozoic Granitoid Magmatism of the Altai–Sayan Fold System and Ozernaya Zone of Western Mongolia), Novosibirsk: SO RAN, 2013.

  39. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Ocean Basins, Saunders A.D. and Norry, M.J. Geol. Soc., 1989, vol. 42, pp. 313–345.

    Google Scholar 

  40. Travin, A.V., Yudin, D.S., Vladimirov, A.G., Khromykh, S.V., Volkova, N.I., Mekhonoshin, A.S., and Kolotilina, T.B., Thermochronology of the Chernorud granulite zone, Ol’khon Region, Western Baikal Area, Geochem. Int., 2009, vol. 47, no. 11, pp. 1107–1124.

    Article  Google Scholar 

  41. Vikent’eva, O.V., Prokofiev, V.Yu., Gamyanin, G.N., Goryachev, N.A., and Bortnikov, N.S., Intrusion-related gold–bismuth deposits of north-east Russia: PTX parameters and sources of hydrothermal fluids, Ore Geol. Rev., 2018, vol. 102, pp. 240–259.

    Article  Google Scholar 

  42. Zheng, Y.-F., Calculation of oxygen isotope fractionation in anhydrous silicate minerals, Geochim. Cosmochim. Acta, 1993a, vol. 57, pp. 1079–1091.

    Article  Google Scholar 

  43. Zheng, Y.-F., Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates, Earth Planet. Sci. Lett., 1993b, vol. 120, pp. 247–263.

    Article  Google Scholar 

  44. Zhmodik S.M., Postnikov A.A., Buslov M.M., Mironov A.G. Geodynamics of the Sayan–Baikal–Muya accretion–collision belt in the Neoproterozoic–Early Paleozoic and regularities of the formation and localization of precious-metal mineralization, Russ. Geol. Geophys., 2006,vol. 47, no. 1, pp. 187–201.

    Google Scholar 

  45. Zhu, L. and Hu, R., Au–Sb association and fractionation in micro-disseminated gold deposits, southwestern Guizhou-geochemistry and thermodynamics, Sci. China, 2000, vol. 43, no. 2, pp. 208–216.

    Google Scholar 

Download references

Funding

The studies were carried out within the state task of GIN SB RAS (no. AAAA-A17-117011650012-7) and IGM SB RAS with funding from the Ministry of Science and Higher Education of the Russian Federation and the Russian Foundation for Basic Research (project nos. 18-05-00489a, 17-05-00936a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Damdinov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damdinov, B.B., Damdinova, L.B., Khubanov, V.B. et al. The Tumannoe Gold–Antimony Occurrence (East Sayan, Russia): Mineralogy, Fluid Inclusions, S and O Isotopes, and U–Pb and 40Ar/39Ar Age. Geol. Ore Deposits 62, 225–247 (2020). https://doi.org/10.1134/S1075701520030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520030034

Keywords:

Navigation