Skip to main content
Log in

Geodynamic simulation of ore-bearing geological structural units by the example of the Strel’tsovka uranium ore field

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Information on designing a 3D integrated model of the deflected mode (DM) of rock massif near the Strel’tsovka uranium ore field (SUOF) in the southeastern Transbaikal region is presented in the paper. This information is based on the contemporary stresses estimated by geostructural and tectonophysical techniques and by studying the seismotectonic deformation of the Earth’s surface using the data on earthquake source mechanisms and GPS geodesy focused on the recognition of active faults. A combination of the results of geostructural, geophysical, geotectonic, and petrophysical research, as well as original maps of faulting and the arrangement of seismic dislocations and seismotectonic regimes (stress tensors), allowed us to design models of the structure, properties, and rheological links of the medium and to determine the boundary conditions for numerical tectonophysical simulation using the method of terminal elements. The computed 2D and 3D models of the state of the rock massif have been integrated into 3D GIS created on the basis of the ArcGIS 10 platform with an ArcGIS 3D-Analyst module. The simulation results have been corroborated by in situ observations on a regional scale (the Klichka seismodislocation, active from the middle Pliocene to date) and on a local scale (heterogeneously strained rock massif at the Antei uranium deposit). The development of a regional geodynamic model of geological structural units makes it possible to carry out procedures to ensure the safety of mining operations under complex geomechanical conditions that can expose the operating mines and mines under construction, by the Argun Mining and Chemical Production Association (PAO PPGKhO) on a common methodical and geoinformational platform, to the hazards of explosions, as well as to use the simulation results aimed at finding new orebodies to assess the flanks and deep levels of the ore field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adushkin, V.V. and Turuntaev, S.B., Tekhnogennye protsessy v zemnoi kore (Technogenic Processes in the Earth’s Crust), Moscow: INEK, 2005.

    Google Scholar 

  • Andreeva, O.V., Golovin, V.A., Kozlova, P.S., et al., Evolution of Mesozoic Magmatism and Ore-Forming Metasomatic Processes in the Southeastern Transbaikal Region (Russia), Geol. Ore Deposits, 1996, vol. 38, no. 2, pp. 101–113.

    Google Scholar 

  • Ben-Zion, Y., Properties of seismic fault zone waves and their utility for imaging low-velocity structures, J. Geophys. Res., 1998, vol. 103, pp. 12567–12585.

    Article  Google Scholar 

  • Ben-Zion, Y. and Sammis, C.G., Characterization of fault zones, Pure Appl. Geophys., 2003, vol. 160, pp. 677–715.

    Article  Google Scholar 

  • Bornyakov, S.A., Modeling shear zones on elastic–viscous models, Geol. Geofiz., 1980, no. 11, pp. 75–84.

    Google Scholar 

  • Bornyakov, S.A., Physical simulation of lithosphere faulting at the modern stage: a review, Tektonofizika i aktual’nye voprosy nauk o Zemle. T. 1. (Tectonophysics and Urgent Problems of Earth’s Science), M.: IFZ RAN, 2012, pp. 50–56.

    Google Scholar 

  • Bortnikov, N.S., Petrov, V.A., Veselovskii, A.V., et al., Geoinformation System (GIS) of the Transbaikalian sector of the Mongol–Okhotsk Mobile Belt, Rudy Met., 2012, no. 3, pp. 18–27.

    Google Scholar 

  • Chester, J., Chester, F.M., and Kronenberg, A.K., Fracture energy of the Punchbowl fault, San Andreas system, Nature, 2005, vol. 437, pp. 133–136.

    Article  Google Scholar 

  • Chipizubov, A.V., Smekalin O.P., Imaev, V.S., Paleoseismodislocations in the Klichkinsk thrust zone, Southeastern Transbaikalia, Voprosy inzhenernoi seismologii (Problems of Engineering Seismology), 2014, vol. 41, no. 2, pp. 22–36.

    Google Scholar 

  • Delvaux, D., Moyes, R., Stapel, G., et al., Paleostress reconstruction and geodynamics of the Baikal region, Central Asia. Part I: Palaeozoic and Mesozoic prerift evolution, Tectonophysics, 1995, vol. 252, pp. 61–101.

    Article  Google Scholar 

  • Delvaux, D., Moyes, R., Stapel, G., et al., Paleostress reconstruction and geodynamics of the Baikal region, Central Asia. Part II: Cenozoic rifting, Tectonophysics, 1997, vol. 282, pp. 1–38.

    Article  Google Scholar 

  • Dolgikh, G.I., Issledovanie volnovykh polei okeana i litosfery lazerno-interferentsionnymi metodami (Study of Wave Fields in Ocean and Lithosphere using Laser–Interference Methods), Vladivostok: Dal’nauka, 2000.

    Google Scholar 

  • Dukhovskii, A.A., Amantov, V.A., Artamonova, N.A., et al., Seismic and gravity images of major ore districts and fields of the southeastern Argun’ area (eastern Transbaikal Region, Russia), Geol. Ore Deposits, 1998, vol. 40, no. 2, pp. 87–99.

    Google Scholar 

  • Eksperimental’naya tektonika v teoreticheskoi i prikladnoi tektonofizike (Experimental Tecctonics in Theoretical and Applied Tectonophysics), Luchitskii, I. V. and Bondarenko, P.M., Eds., Moscow: Nauka, 1985.

  • Ekstremal’nye prirodnye yavleniya i katastrofy. T. 2: Geologiya urana, geoekologiya, glyatsiologiya (Extreme Natural Phenomena and Catastrophes. Volume 2. Uranium Geology, Geoecology, and Glaciology) Gliko, A.O., Ed., Moscow: IFZ RAN, 2011.

  • Federal’nye normy i pravila v oblasti ispol’zovaniya atomnoi energii. Uchet vneshnikh vozdeistvii prirodnogo i tekhnogennogo proiskhozhdeniya na ob’ektakh ispol’zovaniya atomnoi energii (OIAE). NP-064-05 (Federal Norms and Rules in the Sphere of Application of Atomic Energy. Allowance for the External Natural and Technogenic Impacts on the Objects of Atomic Energy Application (OAEA). NP-064-05. (Fed. Sluzhba Ekol. Tekhnol. Atom. Nadzor, Moscow, 2005).

  • Fundamental’nye osnovy formirovaniya resursnoi bazy strategicheskogo syr’ya (Au, Ag, Pt, Cu, redkie elementy i metally) (Fundamental Principles of the Formation of Resource Base of Strategic Raw Material (Au, Ag, Pt, Cu, Rare Elements, and Metals), Bortnikov, N.S., Ed., Moscow: GEOS, 2012.

  • Geologicheskoe stroenie Chitinskoi oblasti. Ob"yasnitel’naya zapiska k geologicheskoi karte masshtaba 1: 500000 (Geological Structure of the Chita Region. Explanatory Note to the Geological Map on a Scale of 1: 500000), Rutshtein, I.G. and Chaban, N.N., Eds., Chita: GGUP Chitageols’emka, 1997.

  • Gintov O.B. Polevaya tektonofizika i ee primenenie pri izuchenii deformatsii zemnoi kory (Field Tectonophysics and its Application in Studying the Earth’s Crust Deformations), Kiev: Feniks, 2005.

    Google Scholar 

  • Gzovskii M.V. Osnovy tektonofiziki (Principles of Tectonophysics), Moscow: Nauka, 1975.

    Google Scholar 

  • Instruktsiya po bezopasnomu vedeniyu gornykh rabot na rudnikakh i nerudnykh mestorojdeniyakh, ob''ektakh stroitel'stva podzemnykh soorujenii, sklonnykh i opasnykh po gornym udaram (RD 06-329-99) (Instruction on Safe Processing of Mining on Mines and Non-Ore Deposits and Underground Building Objects, Prone and Dangerous Relative to Rock Bursts (RD 06-329-99)), Moscow: GP NTTs Bezopasn. Promyshlen. Gosgortekhnadzora Rossii, 2000.

  • Ishchukova, L.P., Modnikov, I.S., Sychev, I.V., et al., Uranovye mestorozhdeniya Strel’tsovskogo rudnogo polya v Zabaikal’e (Uranium Deposits of the Strel’tsovka Ore Field, Transbaikalia), Irkutsk: GK “Geologorazvedka”, 2007.

    Google Scholar 

  • Katalog gornykh udarov na rudnykh i nerudnykh mestorozhdeniyakh (Severoural’skoe, Tashtagol’skoe, Oktyabr’skoe (Noril’sk), Yuksporskoe, Kukisvumchorrskoe (PO “Apatit”), Kochkarskoe i drugie mestorozhdeniya (Catalogue of Rock Bursts on Ore and Nor-Ore Deposits (Severoural’skoe, Tashtagol’skoe, Oktyabr’skoe (Noril’sk), Yuksporskoe, Kukisvumchorrskoe (PO “Apatit”), Kochkarskoe, and Other Deposits) Leningrad: VNIMI, 1989.

  • Kochkin, B.T. and Petrov, V.A., “Long-term prediction for seismic hazard for radioative waste disposal,” Russ. Geol. Geophys., 2015, vol. 56, no. 7, pp. 1369–1380.

    Article  Google Scholar 

  • Kompleksnye geodinamicheskie poligony: metodika i rezul’taty issledovanii (Complex Geodynamic Test Sites: Methods and Results of Studies), Bulanzhe, Yu.D. and Lilienberg, D.A, Eds., Moscow: Nauka, 1984.

  • Komplekt kart obshchego seismicheskogo raionirovaniya territorii Rossiiskoi Federatsii (OSR-97) (Set of Maps of General Seismic Zoning of the Russian Federation (OSR-97)), Moscow: IFZ RAN, 1999.

  • Kurlenya, M.V., Seryakov, V.M., and Eremenko, A.A. Tekhnogennye geomekhanicheskie polya napryazhenii (Technogenic Geomechanical Stress Fields), Novosibirsk: Nauka, 2005.

    Google Scholar 

  • Kuzmin, Yu.O., Tectonophysics and Recent Geodynamics, Izv. Phys. Solid Earth, 2009, vol. 45, no. 11, pp. 973–986.

    Article  Google Scholar 

  • Kuzmin, Yu.O. and Zhukov, V.S., Sovremennaya geodinamika i variatsii fizicheskikh svoistv gornykh porod (Recent Geodynamics and Variations of Physical Properties of Rocks), Moscow: MGU, 2004.

    Google Scholar 

  • Lesne, O., Calais, E., and Deverchere, J., Finite element modeling of crustal deformation in the Baikal Rift Zone: new insights into the active-passive debate, Tectonophysics, 1998, vol. 289, pp. 327–430.

    Article  Google Scholar 

  • Lukhnev, A.V., San’kov, V.A., Miroshnichenko, A.I., et al., GPS rotation and strain rates in the Baikal–Mongolia region, Russ. Geol. Geophys., 2010, vol. 51, no. 7, pp. 1006–1017.

    Article  Google Scholar 

  • Mikhailova, A.V., Methodical problems of compilation and study of tectonic models using plastic equivalent materials, Eksperimental’naya tektonika: metody, rezul’taty, perspektivy (Experimental Tectonics: Methods, Results, and Prospects), Moscow: Nauka, 1989, pp. 209–227.

    Google Scholar 

  • Nikonov, A.I., Tectonophysical aspects of structural deciphering of lineament structures, in Sovremennaya tektonofizika: metody i rezul’taty. T. 2 (Modern Tectonophysics: Methods and Results), Moscow: IFZ RAN, 2011, vol. 2, pp. 78–93.

    Google Scholar 

  • Osokina, D.N. Plastichnye i uprugie nizko-modul’nye opticheski- aktivnye materialy dlya issledovaniya napryazhenii v zemnoi kore metodom modelirovaniya (Ductile and Elastic Low-Module Optically Active Materials for Modeling Stress in the Earth’s Crust), Moscow: AN SSSR, 1963.

    Google Scholar 

  • Paleoseismologiya (Paleoseismology), McCalpin, J.P., Ed., Amsterdam–Boston–Heidelberg: Academic Press, 2009.

  • Petrov, V.A., Tektonofizicheskie usloviya formirovaniya VTS Vostochno-Zabaikal’skoi uranovorudnoi provintsii (Tectonophysical Conditions of Formation of the VTS Eastern Transbaikalian Uranium Province), Moscow: IGEM RAN-VIMS, 2007, pp. 140–144.

    Google Scholar 

  • Petrov, V.A., Andreeva, O.V., and Poluektov, V.V., “Effect of petrophysical properties and deformation on vertical zoning of metasomatic rocks in U-Bearing volcanic structures: a case of the Strel’tsovka Caldera, Transbaikal Region,” Geol. Ore Deposits, 2014, vol. 56, no. 2, pp. 95–117.

    Article  Google Scholar 

  • Petrov, V.A., Rebetsky, Yu.L., Poluektov, V.V., and Burmistrov, A.A., “Tectonophysics of Hydrothermal Ore Formation: an Example of the Antei Mo–U Deposit, Transbaikalia,” Geol. Ore Deposits, 2015, vol. 57, no. 4, pp. 292–312.

    Article  Google Scholar 

  • Petrov, V.A., Sim, L.A., Nasimov, R.M., and Shchukin, S.I., Fault tectonics, neotectonic stresses, and hidden uranium mineralization in the area adjacent to the Strel’tsovka Caldera, Geol. Ore Deposits, 2010, vol. 52, no. 4, 279–288.

    Article  Google Scholar 

  • Pogorelov V.V., Koneshov V.N., and Rebetsky, Yu.L., Numerical modeling of strains in the western flank of the Zond subduction zone, Vestn. KRAUNTs. Nauki o Zemle, 2010, vol. 15, no. 1, pp. 174–192.

    Google Scholar 

  • Rasskazov, I.Yu., Saksin, B.G., Petrov, V.A., et al., Present-day stress-strain state in the upper crust of the Amurian lithosphere plate, Izv. Phys. Solid Earth, 2014, vol. 50, no. 3, pp. 444–452.

    Article  Google Scholar 

  • Rasskazov, I.Yu., Saksin, B.G., Petrov, V.A., and Prosekin, B.A., Geomechanical conditions and specifics of dynamic manifestation of rock pressure at the Antei deposit, Fiziko-Tekhn. Probl. Razrab. Polezn. Iskop., 2012, no. 3, pp. 3–13.

    Google Scholar 

  • Rebetsky, Yu.L., A review of methods of reconstruction of tectonic stress and seismotectonic strains, Tectonophysics Today, Moscow: OIFZ RAN, 2002, pp. 227–243.

    Google Scholar 

  • Rebetsky, Yu.L., Methods of tectonophysical reconstruction of stress and strains in natural massifs using geological and seismological indicators, Sovremennaya tektonofizika: Metody i rezul’taty (Modern Tecctonophysics: Methods and Results), Moscow: IFZ RAN, 2011, vol. 2, pp. 109–146.

    Google Scholar 

  • Rebetsky, Yu.L., Features of stress state of the crust of intracontinental orogens, Geodinam. Tektonofiz., 2015, no. 4, pp. 437–466.

    Article  Google Scholar 

  • Rebetsky, Yu.L. and Kuzikov, S.I., Active faults of the northern Tien Shan: tectonophysical zoning of seismic risk, Russ. Geol. Geophys., 2016, no. 6, pp. 1225–1250.

    Google Scholar 

  • Rebetsky, Yu.L. and Lermontova, E.S., On long-range influence of regions of anomalous stress state for medium in a supercritical state, Aktivnye razlomy i ikh znachenie dlya otsenki seismicheskoi opasnosti: sovremennoe sostoyanie problem (Active Faults and their Significance for Assessment of Seismic Hazard: Modern State of the Problem), Voronezh: Nauchnaya Kniga, 2014, pp. 331–337.

    Google Scholar 

  • Rebetsky, Yu.L., Sycheva, N.A., Kuchay, O.A., and Tatevossian, R.E., Development of inversion methods on fault slip data. Stress state in orogenes of the Central Asia, Tectonophysics, 2012, vol. 581, pp. 114–131.

    Article  Google Scholar 

  • Reinecker, J., Heidbach, O., Tingay, M., et al., The 2005 Release of the World Stress Map. www.world-stressmap.org

  • Romanyuk, T.V., Vlasov, A.N., Mnushkin, M.G., et al., Rheological model and features of stress-strain state of the active strike-slip fault zone by the example of the San-Andreas fault. Paper 1. San-Andreas Fault as a tectonophysical structure, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2013, vol. 88, no. 1, pp. 3–19.

    Google Scholar 

  • Rybalov, B.L., Spatial distribution of Late Mesozoic ore deposits in the eastern Transbaikal Region (Russia), Geol. Ore Deposits, 2002, vol. 44, no. 4, pp. 312–323.

    Google Scholar 

  • San’kov, V.A., Levi, K.G., Kale, E., et al., Modern and Holocene horizontal movements on the Baikal geodynamic test site, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 422–430.

    Google Scholar 

  • San’kov V.A., Levi K.G., Lukhnev A.V., and Miroshnichenko, A.I., Present-day movement of lithospheric blocks of Central Asia: GPS-geodetic data, Aktual’nye voprosy sovremennoi geodinamiki Tsentral’noi Azii (Actual Problems of Modern Geodynamics of Central Asia) Levi, K.G. and Sherman, S.I., Eds., Novosibirsk: SO RAN, 2005, pp. 165–179.

    Google Scholar 

  • Seminskii, K. Zh., Kozhevnikov, N.O., Cheremnykh, A.V., et al., Interblock zones in the crust of the southern East Siberia: tectonophysical interpretation of geological–geophysical data, Geodinam. Tektonofiz., 2013, vol. 4, no. 3, pp. 203–278.

    Article  Google Scholar 

  • Sherman, S.I., Natural trigger mechanisms of disturbance of metastable state of fault-block medium of lithosphere in real time, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh (Physico-Technical Problems of Development of Mineral Resources), Novosibirsk: SO RAN, 2009, no. 5, pp. 33–48.

    Google Scholar 

  • Sim, L.A., Study of tectonic stresses using geological indicators: methods, results, and recommendation, Izv. Vyssh. Uchebn. Zaved. Geol. Razved., 1991, no. 10, pp. 3–22.

    Google Scholar 

  • Sim, L.A., Application of field methods for reconstruction of tectonic stresses using fault data for solution of theoretical and practical tasks, Sovremennaya tektonofizika: Metody i rezul’taty (Modern Tectonophysics: Methods and Results), Moscow: IFZ RAN, 2011, vol. 2, pp. 156–171.

    Google Scholar 

  • Sim, L.A., A brief review of investigations of paleotecctonic stresses and their significance for solution of geodynamic problems, Geodinam. Tektonofiz., 2013, no. 4, pp. 341–361.

    Article  Google Scholar 

  • Solov’ev, N.S., Shatkov, G.A., Yakobson, L.N., et al., Argun–Mongol volcanic belt, Geol. Geofiz., 1977, no. 3, pp. 20–31.

    Google Scholar 

  • Stefanov, Yu.P., Numerical modeling of Deformation and Destruction of Geological Media, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Tomsk: 2008.

    Google Scholar 

  • Urbancic, T.I. and Trifu, C.-I., Shear zone stress release heterogeneity associated with two mining-induced events of M 1.7 and 2.2, Tectonophysics, 1998, vol. 289, pp. 75–89.

    Article  Google Scholar 

  • Vlasov, A.N., Yanovskiy Yu.G., Mnushkin, M.G., and Popov, A.A., Solving geomechanical problems with UWay FEM package, Computational Methods in Engineering and Science, Iu, V.P., Taylor and Francis, 2004, pp. 453–461.

    Google Scholar 

  • Voitenko, V.N., Model of formation of folds in the central Talas Alatau: data of microstructural and strain analysis, Vestn. St. Peterb. Gos Univ., Ser. 7, 2000. vol. 4, no. 31, pp. 78–84.

    Google Scholar 

  • Voitenko, V.N., Correlation of parameters of finite stresses and anisotropy of magnetic susceptibility: comparison of results of study of metaturbidites of northwestern Ladoga region, Tektonofizika i aktual’nye voprosy nauk o Zemle (Tectonophysics and Actual Problems of the Earth’s Science), Moscow: IFZ RAN, 2008, vol. 1, pp. 22–25.

    Google Scholar 

  • Voitenko, V.N., Pogorelov, V.V., Yakubovskaya, A.O., and Goneger, A.V., Modeling stress and strain fields with allowance for evolutionary formation of geostrucures: evidence from the Sailag Massif, East Sayan, Geodinam. Tektonofiz., 2013, no. 4, pp. 419–433.

    Article  Google Scholar 

  • Vol’fson, F.I., Ishchukova, L.P., Vishnyakov, V.E., et al., Conditions of localization of hydrothermal uranium mineralization in the stratified sequences of the upper structural stage, Izv. Aakad. Nauk SSSR, Ser. Geol., 1967, no. 11, pp. 114–134.

    Google Scholar 

  • Yunga, S.L., Metody i rezul’taty izucheniya seismotektonicheskikh deformatsii (Methods and Results of Study of Seismotectonic Deformations), Moscow: Nauka, 1990.

    Google Scholar 

  • Zhirov, D.V., Sim, L.A., and Marinin, A.V., Reconstruction of the paleostress-state in the southern Khibina Pluton (eastern Fennoscandian Shield), Aktual’nye problemy dinamicheskoi geologii pri issledovanii platformennykh oblastei (Actual Problems of Dynamic Geology during Study of Platform Areas), Moscow: MGU, 2016, pp. 39–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Petrov.

Additional information

Original Russian Text © V.A. Petrov, A.B. Leksin, V.V. Pogorelov, Yu.L. Rebetsky, V.A. San’kov, S.V. Ashurkov, I.Yu. Rasskazov, 2017, published in Geologiya Rudnykh Mestorozhdenii, 2017, Vol. 59, No. 3, pp. 173–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, V.A., Leksin, A.B., Pogorelov, V.V. et al. Geodynamic simulation of ore-bearing geological structural units by the example of the Strel’tsovka uranium ore field. Geol. Ore Deposits 59, 183–208 (2017). https://doi.org/10.1134/S1075701517030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701517030047

Navigation