Skip to main content
Log in

Tectonophysics of hydrothermal ore formation: an example of the Antei Mo–U deposit, Transbaikalia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The Antei deposit of the southeastern Transbaikalian region is one of the largest uranium mines in Russia. It is hosted by the Late Paleozoic granitic basement of the Streltsovskaya caldera and was formed as a result of Late Mesozoic tectonothermal activity. Vein and stockwork–disseminated molybdenum–uranium mineralization at this deposit is controlled by zones of intense hydrothermal alteration, cataclasis, brecciation, and intense fracturing along steeply dipping faults, which acted as conduits for mineralizing fluids and hosts to the ore bodies. The upper edge of the ore-bearing zone is located at a depth of 400 m, and its lower edge was intersected at a depth of 1300 m from the day surface. The conditions of ore localization were determined using structural–geological and petrophysical studies coupled with numerical modeling of the effects of gravitational body forces at purely elastic and postcritical elastoplastic deformational stages. The dynamics of the tectonic stress field in the rock massif was reconstructed using the results of mapping of morphogenetic and kinematic characteristics of fault and fracture systems, as well as data on petrography and mineralogy of rocks and vein-filling material. It was shown that the fault framework of the deposit was formed in four tectonic stages, three of which took place in the geologic past and one of which reflects recent geologic history. Each tectonic stage was characterized by different parameters of the tectonic stress–strain field, fault kinematics, and conditions of mineral formation. The following types of metasomatic rocks are recognized within the deposit: high-temperature K-feldspar rocks and albitites (formed during the Late Paleozoic as the primary structural elements of a granitic massif) and Late Mesozoic low-temperature preore (hydromicatized rocks), synore (hematite, albite, chlorite, and quartz) and postore (kaolinite–smectite) rocks. The following petrophysical parameters were determined for all rock types: density, effective porosity, wetand dry-rock shear (S-wave), and compressional (P-wave) velocity. Ultrasonic measurements were made to obtain the dynamic Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio. The results confirm that all studied lithologies (host granites, K-feldspathized rock with albitites and hydromicatized rocks) have drastically different petrophysical parameters. These values were used as the basis for tectonophysical modeling of Late Mesozoic synore deformation induced by gravitational forces. It was shown that the domains of most intense deformation are confined to the intersections of submeridional fluid-conducting faults with sublatitudinal K-feldspathized and albitized zones, which acted as concentrators of external induced stresses. The formation of enriched ore shoots at these structural nodes can be explained by the suction-pumping of oreforming fluids by pipe-like (tubular) conduits under oriented stress. The deformation of K-feldsparthic rocks and albitites under stresses exceeding the elastic limit raised their fracture permeability due to cataclasis and brecciation and created favorable conditions for circulation of mineralizing fluids and precipitation of minerals. The use of tectonophysical modeling for the reconstruction of paleotectonic and fluid flow conditions during formation of hydrothermal mineralization allows a more precise evaluation of ore potential in deep levels and flanks of ore deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleshin, A.P., Velichkin, V.I., and Krylova, T.L., Genesis and formation conditions of deposits in the unique Strel’tsovka Molybdenum–Uranium ore field: New mineralogical, geochemical, and physicochemical evidence, Geol. Ore Deposits, 2007, vol. 49, no. 5, pp. 392–412.

    Article  Google Scholar 

  • André, A.-S., Sausse, J., and Lespinasse, M., New approach for the quantification of paleostress magnitudes: application to the Soultz vein system (Rhine graben, France), Tectonophysics, 2001, no. 336, pp. 215–231.

    Article  Google Scholar 

  • Andreeva, O.V., Aleshin, A.P., and Golovin, V.A., Vertical zonality of wall rock alterations at the Antei–Streltsovsk uranium deposit, eastern Transbaykal region, Geol. Ore Deposits, 1996, vol. 38, no. 5, pp. 353–366.

    Google Scholar 

  • Andreeva, O.V. and Golovin, V.A., Metasomatic processes in uranium ore deposits of Tulukuev caldera in the East Transbaikal region (Russia), Geol. Ore Deposits, 1998, vol. 40, no. 3, pp. 184–198.

    Google Scholar 

  • Angelier, J., Tectonic analysis of fault slip data sets, J. Geophys. Res., 1984, vol. 89, no. B7, pp. 5835–5848.

    Article  Google Scholar 

  • Ask, D., Evaluation of measurement-related uncertainties in the analysis of overcoring rock stress data from Äspö HRL, Sweden: A case study, J. Rock Mech. Min. Sci, 2003, no. 40, pp. 1173–1187.

    Article  Google Scholar 

  • Atlas strukturno–morfologicheskikh tipov rudnykh obrazovanii Strel’tsovskogo rudnogo polya (Atlas of Structural–Morphological Types of Ore Structures of the Sretl’tsovskoe Ore Field), Irkutsk: Fondy Sosnovskogo PGO, 1982.

  • Boullier, A.-M., Ohotani, T., Fujimoto, K., Ito, H., and Dubois, M., Fluid inclusions in pseudotachylytes from the Nojima fault, Japan, J. Geophys. Res., 2001, vol. 106, no. B10, pp. 21965–21977.

    Article  Google Scholar 

  • Brace, W.F., Volume changes during fracture and frictional sliding: A review, Pure Appl. Geophys., 1978, vol. 116, p. 603–614.

    Article  Google Scholar 

  • Burmistrov, A.A., Starostin, V.I., Dergachev, A.L., and Petrov, V.A., Strukturno-petrofizicheskii analiz mestorozhdenii poleznykh iskopaemykh (Structural and Petrophysical Analysis of Mineral Deposits) 2nd revised edition, Moscow: MAKS, 2009.

    Google Scholar 

  • Byerlee, J.D., Friction of rocks, Pure Appl. Geophys., 1978, vol. 116, pp. 615–626.

    Article  Google Scholar 

  • Chernyshev, I.V. and Golubev, V.N., The Streltsovskoe deposit, Eastern Transbaikalia–Isotope dating of Mineralization in Russia Largest Uranium Deposit, Geochem. Int., 1996, vol. 34, no. 10, pp. 834–846.

    Google Scholar 

  • Cowie, P.A., A healing-reloading feedback control on the growth rate of seismic faults, J. Struct. Geol., 1998, vol. 20, no. 8, pp. 1075–1087.

    Article  Google Scholar 

  • Cox, S.F., Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust, J. Econ. Geol. 100th Ann. Vol., 2005, p. 39–75.

    Google Scholar 

  • Di Toro, G., Pennacchioni, G., and Teza, G., Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults, Tectonophysics, 2005, no. 402, pp. 3–20.

    Article  Google Scholar 

  • Drucker, D.C. and Prager, W., Soil mechanics and plastic analysis of limit design, Q. Appl. Math., 1952, vol. 10, no. 2, p. 157.

    Google Scholar 

  • Dykhuizen, R.C., Diffusive matrix fracture coupling including the effects of flow channeling, Water Resour. Res., 1992, no. 28, pp. 2447–2450.

    Article  Google Scholar 

  • Etchecopar, A. and Mattauer, M., Methodes dinamique d’analyse des populations de failles, Geol. Soc. Am. Bull., 1988, no. 8, pp. 289–302.

    Google Scholar 

  • Geologicheskoe stroenie Chitinskoi oblasti. Ob"yasnitel’naya zapiska k geologicheskoi karte masshtaba 1: 500000 (Geological Structure of the Chita District. Explanatory Notes for the Geological Map, 1: 500000 scale), Rutshtein, I.G. and Chaban, N.N., Eds., Chita: GGUP Chitageols’emka, 1997, p. 239.

    Google Scholar 

  • Golubev, V.N., Age of dispersed uranium mineralization in rocks of the framework of the Strel’tsovka uranium ore field and the Yamsky site, Eastern Transbaikal region, Geol. Ore Deposits, 2011, vol. 53, no. 5, pp 401–411.

    Article  Google Scholar 

  • Gushchenko, O.I., Kinematic analysis of fracture structures during reconstruction of tectonic stress fields, in Polya napryazhenii i deformatsii v litosfere (Stress and Strain Fields of the Lithosphere), Moscow: Nauka, 1979, pp. 7–25.

    Google Scholar 

  • Gzovskii, M.V., Osnovy tektonofiziki (Fundamentals of Tectonophysics) Moscow: Nauka, 1975.

    Google Scholar 

  • Heim, A., Mechanismus der Gebirgsbidung. Bale, 1988.

    Google Scholar 

  • Hudson, J.A., Cornet, F.H., and Christiansson, R., ISRM suggested methods for rock stress estimation-Part 1: Strategy for rock stress estimation, J. Rock Mech. Min. Sci., 2003, no. 40, pp. 991–998.

    Article  Google Scholar 

  • Ishchukova, L.P., Modnikov, I.S., Sychev, I.V., et al., Uranovye mestorozhdeniya Strel’tsovskogo rudnogo polya v Zabaikal’e (Uranium Deposits of the Strel’tsovskoe Ore Field in Transbaikalia), Irkutsk: Tip. “Glazovskaya”, 2007.

    Google Scholar 

  • Kozyrev, A.A., Semenova, I.E., and Avetisyan, I.M., Creation of a discrete geochemical model for the Antei deposit as a basis for predicting strain–stress state of a rock massif, Gornyi Inf. Anal. Byull., 2014, no. 4, pp. 33–40.

    Google Scholar 

  • Laverov, N.P., Petrov, V.A., Poluektov, V.V., Nasimov, R.M., Hammer, J., Burmistrov, A.A., and Shchukin, S.I., The Antei uranium deposit: a natural analogue of an SNF repository and an underground geodynamic laboratory in granite, Geol. Ore Deposits, 2008, vol. 50, no. 5, pp. 339–361.

    Article  Google Scholar 

  • Lin, A., Tanaka, N., Uda, S., and Satish-Kumara, M., Repeated coseismic infiltration of meteoric and seawater into deep fault zones: a case study of the Nojima fault zone, Japan, Chem. Geol., 2003, vol. 202, pp. 139–153.

    Article  Google Scholar 

  • Lukin, L.I., Chernyshev, V.F., and Kushnarev, I.P., Mikrostrukturnyi analiz (Microstructural Analysis), Moscow: Nauka, 1965.

    Google Scholar 

  • Mal’kovskii, V.I. and Pek, A.A., Vliyanie razryvnykh narushenii na protsessy flyuidnogo teplomassoperenosa v zemnoi kore (The Effect of Faults on Fluid Heat and Mass Transfer in the Earth’s Crust), Moscow: IFZ RAN, 2014.

    Google Scholar 

  • Marrett, R. and Peacock, D.C.P., Strain and Stress, J. Struct. Geol., 1999, no. 21, pp. 1057–1063.

    Article  Google Scholar 

  • Melosh, H., Impact Cratering: A Geological Process, New York: Oxford University Press, 1989.

    Google Scholar 

  • Mironenko, M.V., A physicochemical model of hydrothermal mineral formation at the Antei deposit, in Materialy po geologii uranovykh mestorozhdenii (Trans. Geology of Uranium Deposits), issue 93, Moscow: VIMS, 1985, pp. 83–87.

    Google Scholar 

  • Naumov, G.B., Mironenko, M.V., Salazkin, A.N., et al., New data on geochemical conditions of the formation of ore deposits at the Strel’tsovskoe ore field and their practical significance, in Materialy po geologii uranovykh mestorozhdenii (Trans. Geology of Uranium Deposits), issue 93, Moscow: VIMS, 1985, pp. 65–82.

    Google Scholar 

  • Nguyen, P.T., Cox, S.F., Harris, L.B., and Powell, C., MCA., Fault-valve behaviour in optimally oriented shear zones: an example at the Revenge gold mine, Kambalda, Western Australia, J. Struct. Geol., 1998, vol. 20, no. 12, pp. 1625–1640.

    Article  Google Scholar 

  • Nikolaev, P.N., Metodika tektonodinamicheskogo analiza (Methods of Tectonodynamic Analysis), Moscow: Nedra, 1992.

    Google Scholar 

  • Nikolaevskii, V.N., Geomekhanika i flyuidodinamika (Geomechanics and Fluid Dynamics), Moscow: Nedra, 1996.

    Google Scholar 

  • Nordqvist, A.W., Tsang, Y.W., Tsang, C.-F., et al., Effects of high variance of fracture transmissivity on transport and sorption at different scales in a discrete model for fractured rocks, J. Contam. Hydrol., 1996, no. 22, pp. 39–66.

    Article  Google Scholar 

  • Oliver, N.H.S., Ord, A., Valenta, R.K., and Upton, P., The role of rock rheological heterogeneity in fluid flow and epigenetic mineralization, with examples from the Mt Isa district, Rev. Econom. Geol., 2001, vol. 14, pp. 51–74.

    Google Scholar 

  • Petrov, V.A., Tectonodynamic conditions of radioactive waste disposal in crystalline rocks, Doctoral (Geol. Mineral.) Dissertation, Moscow: IGEM RAN, 2006.

    Google Scholar 

  • Petrov, V.A., Tectonophysical conditions of the formation of volcanotectonic structures of the East Tarnsbaikalian uranium province, in Tezisy nauchnoi konferentsii (Proceedings of the Scientific Conference), Moscow: IGEM RAN, 2007, pp. 140–144.

    Google Scholar 

  • Petrov, V.A., Poluektov, V.V., Andreeva, O.V., Golovin, V.A., Shchukin, S.I., Prosekin, B.A., Nasimov, R.M., and Burmistrov, A.A., Fault framework, mineralogical and chemical composition, petrophysical properties and stress–strain state of the rocks at the Antei deposit, in Tezisy nauchnoi konferentsii (Proceedings of the Scientific Conference), Moscow: IGEM RAN, 2007, pp. 148–152.

    Google Scholar 

  • Petrov, V.A., Poluektov, V.V., Nasimov, R.M., Shchukin, S.I., and Hammer, J., Natural and technogenic changes in the mode of rock deformation in the uranium deposit in granites, Izv. Phys. Solid Earth, 2009, vol. 45, no. 11, pp. 1012–1018.

    Article  Google Scholar 

  • Petrov, V.A., Tectonophysical and structural-petrophysical indicators of fluid migration in fault zones and methods of their investigation, in Sovremennaya tektonofizika. Metody i rezul’taty (Modern Tectonophysics. Methods and Results), vol. 2, Moscow: IFZ RAN, 2011, pp. 94–108.

    Google Scholar 

  • Petrov, V.A., Poluektov, V.V, Nasimov, R.M., Burmistrov, A.A, Shchukin, S.I., and Hammer, J., A study of natural and anthropogenic processes in granites of uranium deposits for substantiation of long-term safe SNF disposal, in Ekstremal’nye prirodnye yavleniya i katastrofy. T. 2 Geologiya urana, geoekologiya, glyatsiologiya (Extreme Natural Phenomena and Catastrophes. vol. 2), Moscow: IFZ RAN, 2011, pp. 124–138.

    Google Scholar 

  • Petrov, V.A., Ustinov, S.A., Poluektov, V.V., and Prokof’ev, V.Yu., Reconstruction of migration paths and conditions for orebearing hydrothermal fluids: Structural–geological and thermobarogeochemical approach, Vestnik RFFI, 2013, no. 1, pp.27–33.

    Google Scholar 

  • Petrov, V.A., Andreeva, O.V., and Poluektov, V.V., Effect of petrophysical properties and deformation on vertical zoning of metasomatic rocks in U-bearing volcanic structures: A case of the Strel’tsovka caldera, Transbaikal region, Geol. Ore Deposits, 2014, vol. 56, no. 2, pp. 81–100.

    Article  Google Scholar 

  • Petrov, V.A., Veselovskii, A.V., Kuz’mina, D.A., Plate, A.N., and Gal’berg, T.V., Three-dimensional GISmodeling of geodynamic objects and processes, Available from VINITI, 2015, Ser.2, no. 1, pp. 15–21.

    Google Scholar 

  • Ponomarev, V.S., Energonasyshchennost’ geologicheskoi sredy (Energy Content of a Geologic Medium), Moscow: Nauka, 2008.

    Google Scholar 

  • Prokof’ev, V.Yu. and Pek, A.A., Problems in estimation of the formation depth of hydrothermal deposits by data on pressure of mineralizing fluids, Geol. Ore Deposits, 2015, vol. 57, no. 1, pp. 1–20.

    Article  Google Scholar 

  • Rasskazov, I.Yu., Saksin, B.G., Petrov, V.A., and Prosekin, B.A., Geomechanical conditions and peculiarities of dynamic manifestations of overburden pressure at the Antei deposit, Fiziko-Tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2012, no. 3, pp. 3–13.

    Google Scholar 

  • Rasskazov, I.Yu., Saksin, B.G., Petrov, V.A., Shevchenko, B.F., Usikov, V.I., and Gil’manova, G.Z Present-day stress-strain state in the upper crust of the Amurian lithosphere plate, Izv., Phys. Solid Earth, 2014, vol. 50, no. 3, pp. 444–452.

    Article  Google Scholar 

  • Rastsvetaev, L.M., A paragenetic structural analysis of faults, in Problemy strukturnoi geologii i fiziki tektonicheskikh protsessov (Problems of Structural Geology and Physics of Tectonic Processes), Moscow: Nauka, 1987, pp. 173–230.

    Google Scholar 

  • Rebetsky, Yu.L., Mechanism of generation of tectonic stresses in the zones of high vertical movements and earthquakes, Fiz. Mezomekh., 2008a, vol. 1, no. 11, pp. 66–73.

    Google Scholar 

  • Rebetsky, Yu.L., Possible mechanism of horizontal compression stress generation in the Earth’s crust, Dokl. Earth Sci., 2008b, vol. 423A, no. 9, pp 1448–1451.

    Article  Google Scholar 

  • Rebetsky, Yu.L., Tektonicheskie napryazheniya i prochnost' gornykh massivov (Tectonic Stresses and Strength of Rock Massifs), Moscow: Nauka, 2007.

    Google Scholar 

  • Rebetsky, Yu.L., Mechanism of generation of residual stresses and high-magnitude horizontal compressive stresses in the earth’s crust of intraplate orogens, in Problemy tektonofiziki. K 40-letiyu sozdaniya M.V. Gzovskim laboratorii tektonofiziki v IFZ RAN (Problems of Tectonophysics. On the 40th Anniversary since M.V. Gzovskii’s Foundation of the Laboratory of Tectonophysics at the Institute of Physics of the Earth), Moscow: IFZ RAN, 2008.

    Google Scholar 

  • Reinecker, J., Heidbach, O., Tingay, M., et al., The 2005 release of the World Stress Map. http://www.world-stressmap.org.

  • Seminskii, K.Zh., Vnutrennyaya struktura kontinental’nykh razlomnykh zon. Tektonofizicheskii aspekt (Internal Structure of Continental Fault Zones), Novosibirsk: SO RAN, Filial Geo, 2003.

    Google Scholar 

  • Shchukin, S.I., Petrov, V.A., Poluektov, V.V., and Ustinov, S.A., Geological database for modeling and prediction of deformation in the rock massif at the Antei deposit of the Strel’tsovskoe ore field, Gorn. Zh., 2015, no. 2, pp. 21–26.

    Google Scholar 

  • Sherman, S.I., Bornyakov, S.A., and Buddo, V.Yu., Oblasti dinamicheskogo vliyaniya razlomov (rezul’taty modelirovaniya) (Zones of Fault Dynamic Influence Based on Modeling Results), Novosibirsk: Nauka, 1983.

    Google Scholar 

  • Shipton, Z.K. and Cowie, P.A., A conceptual model for the origin of fault damage zone structures in high-porosity sandstone, J. Struct. Geol., 2003, no. 25, pp. 333–344.

    Article  Google Scholar 

  • Sibson, R.H., Implications of fault-valve behavior for rupture nucleation and recurrence, Tectonophysics, 1992, vol. 211, pp. 283–293.

    Article  Google Scholar 

  • Sibson, R.H., Structural permeability of fluid-driven faultfracture meshes, J. Struct. Geol., 1996, no. 8, pp. 1031–1042.

    Article  Google Scholar 

  • Sim, L.A., A study of tectonic stresses based on geological indicators (methods, results, recommendations), Izv. Vyssh. Uchebn. Razved., Geol. Razved., 1991, no. 10, pp. 3–27.

    Google Scholar 

  • Starostin, V.I., Strain–velocity concept of the formation of ore-bearing structures and their typification, Vestn. Mosk. Univ., Ser. 4: Geol., 1994, no. 3, pp. 3–19.

    Google Scholar 

  • Starostin, V.I., Strukturno-petrofizicheskii analiz endogennykh rudnykh polei (Structural–Petrophysical Analysis of Endogenic Ore Fields), Moscow: Nedra, 1979.

    Google Scholar 

  • Starostin, V.I., Paleotektonicheskie rezhimy i mekhanizmy formirovaniya struktur rudnykh polei (Paleotectonic Regimes and Mechanisms of the Formation of Ore Field Structures), Moscow: Nedra, 1988.

    Google Scholar 

  • Stavrogin, A.N. and Protosenya, A.G., Mekhanika deformirovaniya i razrusheniya gornykh porod (Mechanics of Rock Deformation and Failure), Moscow: Nedra, 1992.

    Google Scholar 

  • Tagami, T., Thermochronological investigation of fault zones, Tectonophysics, 2012, vol. 538–540, pp. 67–85.

    Article  Google Scholar 

  • Vlasov, A.N., Yanovskiy, Yu. G., Mnushkin, M.G., Popov, A.A., Solving geomechanical problems with UWay FEM package, Computational Methods in Engineering and Science, Iu, V.P., Ed., Taylor and Francis, 2004, pp. 453–461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Petrov.

Additional information

Original Russian Text © V.A. Petrov, Yu.L. Rebetsky, V.V. Poluektov, A.A. Burmistrov, 2015, published in Geologiya Rudnykh Mestorozhdenii, 2015, Vol. 57, No. 4, pp. 327–350.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, V.A., Rebetsky, Y.L., Poluektov, V.V. et al. Tectonophysics of hydrothermal ore formation: an example of the Antei Mo–U deposit, Transbaikalia. Geol. Ore Deposits 57, 292–312 (2015). https://doi.org/10.1134/S1075701515040030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701515040030

Keywords

Navigation