Skip to main content
Log in

The Agan epithermal gold-silver deposit and prospects for the discovery of high-sulfidation mineralization in northeast Russia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The Arman volcanotectonic depression (VTD) containing the Agan deposit is distinguished as the most promising area for the discovery of high-sulfidation (HS) epithermal Au deposit during prospecting in the Central Okhotsk ore district of the Okhotsk-Chukotka volcanogenic belt (OChVB). Studies reveal that the volcanic rocks of the Agan deposit strongly differ from those of the reference HS-type epithermal deposits. It was found that quartz-alunite metasomatites in the ore field are characterized by low Au content and Sn content two orders of magnitude higher than those of Cu and Mo. The pair-correlation coefficients are K cor (Au-Sn) = 0.73 and K cor(Au-Cu) = 0.22. The ore bodies of the Agan deposit do not contain enargite and luzonite—the main indicator minerals for Au productive HS-type mineralization; porous (“vuggy”) quartz is weakly manifested. In terms of the mineral complex, the epithermal mineralization revealed in the metasomatites of the deposit is close to the intermediate sulfidation type. At the same time, this mineralization, in many of its features, is similar to the mineralization developed in siliceous and quartz-alunite lithocaps, which are formed above degassing intrusions. In this setting, HS-type ore-bearing fluids either are not formed in the system or do not reach epithermal depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akinin, V.V. and Miller, E.L., Evolution of calc-alkaline magmas of the Okhotsk-Chukotka Volcanic Belt, Petrology, 2011, vol. 19, no. 3, pp. 237–277.

    Article  Google Scholar 

  • Arribas, A., Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid in magmas, fluids, and ore deposits, Mineral. Ass. Can., Short Course Ser., Thompson, J.F.H., Ed., 1995, vol. 23, pp. 419–454.

    Google Scholar 

  • Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for H2O-NaCl fluid inclusions, in Fluid Inclusions in Minerals: Methods and Application, De Vivo, B. and Frezzotti, M.L., Eds., Siena: Pontignano, 1994, pp. 117–130.

    Google Scholar 

  • Bortnikov, N.S, Khanchuk, A.I., Krylova, T.L., et al., Geochemistry of the mineral-forming fluids in some tinbearing hydrothermal systems of Sikhote Alin, the Russian Far East, Geol. Ore Dep., 2005, vol. 47, no. 6, pp. 488–516.

    Google Scholar 

  • Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., et al., Fluid composition and origin in the hydrothermal system of the Nezhdaninsky Gold Deposit, Sakha (Yakutia), Russia, Geol. Ore Dep., 2007, vol. 49, no. 2, pp. 87–128.

    Article  Google Scholar 

  • Catchpole, H., Kouzmanov, K., and Fontbote, L., Copperexcess stannoidite and tennantite-tetrahedrite as proxies for hydrothermal fluid evolution in a zoned Cordillerantype base-metal district, Morococha, Central Peru, Can. Mineral., 2012, vol. 50, pp. 719–743.

    Article  Google Scholar 

  • Corbett, G., Anatomy of porphyry-related Au-Cu-Ag-Mo mineralised systems: some exploration implications, Australian Institute of Geoscientists North Queensland Exploration Conference. AIG Bull., 2009, vol. 49, pp. 36–46.

    Google Scholar 

  • Corbett, G.J. and Leach, T.M., Southwest Pacific rim goldcopper systems: structure, alteration and mineralization, Econ. Geol. Bull. Soc. Econ. Geol., 1998, vol. 6.

  • Eremin, R.A., Gidrotermal’nyi metamorfizm i orudenenie Armanskoi vulkanostruktury (Hydrothermal Metamorphism and Mineralization of the Arman Volcanic Structure), Novosibirsk: Nauka, 1974.

    Google Scholar 

  • Fenner, C.N., Stability relations of the silica minerals, Am. J. Sci., 1913, vol. 36, pp. 331–338.

    Article  Google Scholar 

  • Fogel’man, N.A., Konstantinov, M.I., and Kurbanov, N.K., Principles of systematics of gold deposits for prediction and exploration, Otechestvennaya Geol., 1995, no. 3, pp. 1–41.

    Google Scholar 

  • Goncharov, V.I., Vashchilov, Yu.Ya., Sidorov, A.A., et al., Deep structure of the large noble metal deposits of Northeast Asia, in Krupnye i superkrupnye mestorozhdeniya: zakonomernosti razmeshcheniya i usloviya obrazovaniya (Large and Superlarge Deposits: Distribution and Genesis), Moscow: Inst. Geol. Rudn. Mestorozhd. Ross. Akad. Nauk, 2005, pp. 69–95.

    Google Scholar 

  • Goryachev, N.A., Gamyanin, G.N., and Gel’man, M.L., Prospects of finds of high-sulfidation type deposits in the volcanic belts of Northeast Russia, in Tezisy dokladov II gorno-geologicheskogo foruma “Zoloto severnogo obramleniya Patsifika” (Proceedings of 2nd Mining-Geological Forum “Gold of the Northern Pacific Framing”), Magadan: 2011, pp. 88–90.

    Google Scholar 

  • Hedenquist, J.W., Browne, P.R., and Allis, R.G., Epithermal Gold Mineralization, Wairakei: 1988.

    Google Scholar 

  • Hedenquist, J.W., Arribas, A., Jr., and Reynolds, T.J., Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry-epithermal Cu-Au-deposits, Philippines, Econ. Geol., 1998, vol. 93, pp. 373–404.

    Article  Google Scholar 

  • Hedenquist, J.W., Arribas, A., and Gonzalez-Urien, E., Exploration for epithermal gold deposits, in Gold in 2000, SEG Shortcourse, Tahoe: 2000, pp. 245–277.

    Google Scholar 

  • Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, Chichester: Wiley, 1979.

    Google Scholar 

  • Jannas, R.R., Bowers, T.S., Petersen, U., et al., High-sulfidation deposit types in the El Indio District, Chile, in Geology and Ore Deposits of the Andes, Econ. Geol. Sp. Publ., 1999, vol. 7, pp. 219–266.

    Google Scholar 

  • Konstantinov, M.M., Vargunina, N.P., Kosovets, T.N., et al., Zoloto-serebryanye mestorozhdeniya (Gold-Silver Deposits), Krivtsov A.I., Ed. Moscow: Tsentr. Nauchno-Issled. Inst. Geol. Razved., 2000.

  • Kotlyar, I.N., Zhulanova, I.L., Rusakova, T.B., et al., Izotopnye sistemy magmaticheskikh i metamorficheskikh kompleksov Severo-Vostoka Rossii (Isotope Systems of Magmatic and Metamorphic Complexes of Northeast Russia), Magadan: Severovost. Kompl. Nauchno-Issled. Inst. Ross. Akad. Nauk, 2001.

    Google Scholar 

  • Le Bas, M.J., Maitre, R.W., Streckeisen, A., et al., Chemical classification of volcanic rocks based on the total alkalisilica diagram, J. Petrol., 1986, vol. 27, pp. 745–750.

    Article  Google Scholar 

  • Lesage, G., Richards, J.P., Muehlenbachs, K., et al., Geochronology, geochemistry, and fluid characterization of the Late Miocene Buritica gold deposit, Antioquia department, Columbia, Econ. Geol., 2013, vol. 108, pp. 1067–1097.

    Article  Google Scholar 

  • Longo, A.A., Dilles, J.H., Grunder, A.L., et al., Evolution of calc-alkaline volcanism and associated hydrothermal gold deposits at Yanacocha, Peru, Econ. Geol., 2010, vol. 105, pp. 1191–1241.

    Article  Google Scholar 

  • Middlemost, E.A.K., Naming materials in the magma/igneous rock system, Earth-Science Rev., 1994, vol. 37, pp. 215–224.

    Article  Google Scholar 

  • Mishin, L.F., Secondary quartzites and their relation to gold mineralization at the Svetloe Deposit, Ul’ya Trough, Okhotsk-Chukotka Volcanic Belt, Russ. J. Pac. Geol., 2011, vol. 5, no. 4, pp. 289–312.

    Article  Google Scholar 

  • Mnogofaktornye prognozno-poiskovye modeli mestorozhdenii zolota i serebra Severo-Vostoka Rossii (Multifactor Prediction-Exploration Models of Gold and Silver Deposits of Northeast Russia), Konstantinov, M.M, Ed., Moscow: Tsentr. Nauchno-Issled. Geol. Razved. Inst., 1992.

    Google Scholar 

  • Naboko, S.I., Role of subaerial volcanism in ore formation, Geol. Geofiz., 1970, no. 1, pp. 23–30.

    Google Scholar 

  • Richards, J.P., Giant ore deposits formed by optimal alignments and combinations of geological processes, Nat. Geosci., 2013, vol. 6, pp. 911–916.

    Article  Google Scholar 

  • Savva, N.E., Bryzgalov, I.A., and Tyukova, E.E., Tin porphyry formation of the Karamken region (geologicalstructural and mineralogical features), Vestn. Severovost. Nauch. Ts. Dal’nevost. Otd. Ross. Akad. Nauk, 2009, no. 4, pp. 2–14.

    Google Scholar 

  • Savva, N.E., Pal’yanova, G.A., and Byankin, M.A., The problem of genesis of gold and silver sulfides and selenides in the Kupol deposit (Central Chukotka), Russ. Geol. Geophys., 2012, vol. 53, no. 5, pp. 457–466.

    Article  Google Scholar 

  • Sidorov, A.A., Zoloto-serebryanaya formatsiya Vostochno-Aziatskikh vulkanogennykh poyasov (Gold-silver Formation of the East Asian Volcanogenic Belts), Magadan: Severovost. Kompl. Nauchno-Issled. Inst. Dal’nevost. Ot. Ross. Akad. Nauk, 1978.

    Google Scholar 

  • Sidorov, A.A., Belyi, V.F., Volkov, A.V., et al., The gold-silver Okhotsk-Chukotka Volcanic Belt, Geol. Ore Dep., 2009, vol. 51, no. 6, pp. 441–455.

    Article  Google Scholar 

  • Sidorov, A.A., Starostin, V.I., and Volkov, A.V., Rudnoformatsionnyi analiz (Ore-Formation Analysis), Moscow: MAKS Press, 2011.

    Google Scholar 

  • Sillitoe, R.H., Epithermal models: genetic types, geometrical controls, and shallow features, Geol. Ass. Can. Sp. Pap., 1993, pp. 403–417.

    Google Scholar 

  • Sillitoe, R.H., Exploration of porphyry copper lithocaps, Australas. Inst. Mining Metall. Publ. Ser., 1995, no. 9, pp. 527–532.

    Google Scholar 

  • Sillitoe, R.H. and Hedenquist, J.W., Linkages between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits, SEG Sp. Publ., 2003, vol. 10, pp. 315–343.

    Google Scholar 

  • Sillitoe, R.H., Hannington, M.D., and Thompson, J.F.H., High sulfidation deposits in the volcanogenic massive sulfide environment, Econ. Geol., 1996, vol. 91, pp. 204–212.

    Article  Google Scholar 

  • Simmons, S.F., White, N.C., and John, D.A., Geological characteristics of epithermal precious metal and base metal deposits, Econ. Geol., 2005, vol. 100, pp. 485–522.

    Article  Google Scholar 

  • Stoffregen, R., Genesis of acid-sulfate alteration and AuCu-Ag mineralization at Summitville, Colorado, Econ. Geol., 1987, vol. 82, pp. 1575–1591.

    Article  Google Scholar 

  • Struzhkov, S.F., Aristov, V.V., Danil’chenko, V.A., et al., Otkrytiya mestorozhdenii zolota v Tikhookeanskom rudnom poyase (1959–2008) (Discovery of Gold Deposits in the Pacific Ore Belt (1959–2008)), Moscow: Nauchnyi Mir, 2008.

    Google Scholar 

  • Umitbaev, R.B., Okhotsko-Chaunskaya metallogenicheskaya provintsiya (Okhotsk-Chaun Metallogenic Province), Moscow: Nauka, 1986.

    Google Scholar 

  • Urusov, V.S., Teoreticheskaya kristallokhimiya (Theoretical Crystallochemistry), Moscow: Mosk. Gos. Univ., 1987.

    Google Scholar 

  • Volkov, A.V., Chizhova, I.A., Alekseev, V.Yu., et al., Variations of the Ag/Au index in epithermal deposits, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 911–914.

    Article  Google Scholar 

  • Volkov, A.V. and Sidorov, A.A., Economic significance of epithermal gold-silver deposits, Vestn. Ross. Akad. Nauk, 2013, vol. 83, no. 8, pp. 27–37.

    Google Scholar 

  • White, N.C. and Hedenquist, J.W., Epithermal gold deposits: styles, characteristics, and exploration, SEG Newsletter, 1995, vol. 23, no. 1, pp. 9–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Volkov.

Additional information

Original Russian Text © A.V. Volkov, N.E. Savva, A.A. Sidorov, E.E. Kolova, I.A. Chizhova, V.Yu. Alekseev, 2015, published in Geologiya Rudnykh Mestorozhdenii, 2015, Vol. 57, No. 1, pp. 25–47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, A.V., Savva, N.E., Sidorov, A.A. et al. The Agan epithermal gold-silver deposit and prospects for the discovery of high-sulfidation mineralization in northeast Russia. Geol. Ore Deposits 57, 21–41 (2015). https://doi.org/10.1134/S1075701515010067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701515010067

Keywords

Navigation