Skip to main content
Log in

The formation of low-temperature sedimentary pyrite and its relationship with biologically-induced processes

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

This contribution is an updated review on sedimentary pyrite and on its role in well-consolidated research topics, such as the biogeochemical cycles and the studies on sediment-hosted ore deposit studies, as well as new frontiers of research, such as astrobiology. Textural and compositional information preserved in sedimentary pyrite from sediment-hosted ore deposits has contributed to elucidate their environment of forzmation. In particular, the content of redox-sensitive elements such as Ni, Co, Mo, and V has implications for defining the syn- and post-sedimentary conditions. In addition, the stable isotope compositions are useful indicators of the pathways of both biogenic and abiogenic pyrite formation. Despite the longstanding research on pyrite and the mechanism of its formation, there are still significant gaps in our knowledge. In this nonexhaustive review, we briefly touch on different current aspects of research on sedimentary pyrite, exemplifying how sedimentary pyrite remains relevant to geoscientists, and becomes more and more relevant in understanding some basic aspects of knowledge, such as the origin of life and the search for extraterrestrial life, as well as aspect of classical applied science, such as the implications for ore deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agangi, A., Hofmann, A., and Wohlgemuth-Ueberwasser, C.C., Pyrite zoning as a record of mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa, Econ. Geol., 2013, vol. 108, pp. 1243–1272.

    Google Scholar 

  • Agangi, A., Hofmann, A., Rollion-Bard, C., Marin-Carbonne, J., Cavalazzi, B., Large, R., and Meffre, S., Gold accumulation in the Archaean Witwatersrand Basin, South Africa—evidence from concentrically laminated pyrite, Earth Sci. Rev., (submitted).

  • Allard, T., Menguy, N., Salomon, J., Calligaro, T., Weber, T., Calas G., and Benedetti, M.F., Revealing forms of iron in riverborne material from major tropical rivers of the Amazon Basin (Brazil), Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 3079–3094.

    Google Scholar 

  • Allen, E.T., Crenshaw, J.L., Johnson, J., and Larsen, E.S., The mineral sulphides of iron, Am. J. Sci., 1912, vol. 33, pp. 169–236.

    Google Scholar 

  • Allen, R.L., Weihed, P., Blandell, D., Crawford, T., Davidson, G., et al., Global comparisons of volcanic-associated massive sulphide districts, Geol. Soc. Spec. Publ., 2002, vol. 204, pp. 13–37.

    Google Scholar 

  • Aller, R.C., Mackin, J.E., and Cox, R.T., Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones, Cont. Shelf Res., 1986, vol. 6, pp. 263–289.

    Google Scholar 

  • Amils, R., González-Toril, E., Fernández-Remolar, D.C., Felipe Gómez, F., Aguilera, A., et al., Extreme environments as Mars terrestrial analogs: The Rio Tinto case, Planet. Space Sci., 2007, vol. 55, pp. 370–381.

    Google Scholar 

  • Amils, R., Fernández-Remolar, D., Gómez, F., González-Toril, E., Rodríguez, N., Briones, C., Prieto-Ballesteros, O., Sanz, J.L., Díaz, E., and Stevens, T.O., Subsurface geomicrobiology of the Iberian Pyritic Belt, in Microbiology of Extreme Soils, Soil Biology, Dion, P. and Shekhar Nautiyal, C., Eds., Berlin, Germany: Springer, 2008, vol. 13, pp. 205–223.

    Google Scholar 

  • Bailey, J.V., Raub, T.D., Meckler, A.N., Harrison, B.K., Raub, T.M.D., et al., Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2010, vol. 285, pp. 131–0142.

    Google Scholar 

  • Bakewell, R., An Introduction to Geology (2nd ed), 1815, Harding, London.

    Google Scholar 

  • Barrie, C.D., Boyle, A.P., Cook, N.J., and Prior, D.J., Pyrite deformation textures in the massive sulfide ore deposits-of the Norwegian Caledonides, Tectonophysics, 2010, vol. 483, pp. 269–286.

    Google Scholar 

  • Barton, E.S. and Hallbauer, D.K., Trace-element and U-Pb isotope compositions of pyrite types in the Proterozoic Black Reef, Transvaal Sequence, South Africa: Implications on genesis and age, Chem. Geol., 1996, vol. 133, pp. 173–199.

    Google Scholar 

  • Benning, L.G., Wilkin, R.T., and Barbes, H.L., Reaction pathways in the Fe-S system below 100°C, Chem. Geol., 2000, vol. 167, pp. 25–51.

    Google Scholar 

  • Berner, R.A., Modeling atmospheric O2 over Phanerozoic time, Geochim. Cosmochim. Acta, 2001, vol. 65, pp. 685–694.

    Google Scholar 

  • Berner, R.A. and Raiswell, R., C/S method for distinguishing freshwater from marine sedimentary rocks, Geology, 1984, vol. 12, pp. 365–368.

    Google Scholar 

  • Binda, P.L., Koopman, H.T., and Schwann, P.L., Sulphide ooids from the proterozoic Siyeh Formation of Alberta, Canada, Miner. Deposita, 1985, vol. 20, pp. 43–49.

    Google Scholar 

  • Binda, P.L. and Simpson, E.L., Petrography of sulphide-coated grains from the Ordovician Winnipeg Formation, Saskatchewan, Canada, Eur. J. Mineral., 1989, vol. 1, pp. 439–453.

    Google Scholar 

  • Bower, J., Savage, K.S., Weinman, B., Barnett, M.O., Hamilton, W.P., and Harper, W.F., Immobilization of mercury by pyrite (FeS2), Environ. Pollut., 2008, vol. 156, pp. 504–514.

    Google Scholar 

  • Bragg, W.L., The analysis of crystals by the X-ray spectrometer, Proc. R. Soc. Lond., 1914, vol. A89, p. 468.

    Google Scholar 

  • Brown, D. and McClay, K.R., Deformation textures in pyrite fromthe Vangorda Pb-Zn-Ag deposit, Yukon, Canada, Miner. Mag., 1993, vol. 57, pp. 55–66.

    Google Scholar 

  • Burns, R.G., Ferric sulfates on Mars. Journal of Geophysical Research, Solid Earth Planets, 1987, vol. 92, pp. E570–E574.

    Google Scholar 

  • Canfield, D.E. and Raiswell, R., Pyrite formation and Fossil preservation, in Taphonomy: Releasing the Data Locked in the Fossil Record, Allison, P.A. and Briggs, D.E., Eds., New York: Plenum Press, 1991.

    Google Scholar 

  • Canfield, D.E. and Thamdrup, B., The production of S-34-depleted sulfide during bacterial disproportionation of elemental sulfur, Science, 1994, vol. 266, pp. 1973–1975.

    Google Scholar 

  • Canfield, D.E., Biogeochemistry of sulfur isotopes, Reviews in Mineralogy and Geochemistry, 2001, vol. 43, pp. 607–636.

    Google Scholar 

  • Canfield, D.E., The early history of atmospheric oxygen: Homage to Robert M. Garrels, Annu. Revi. Earth Pl. Sc., 2005, vol. 33, pp. 1–36.

    Google Scholar 

  • Canfield, D.E. and Raiswell, R., The evolution of the sulfur cycle, Am. J. Sci., 1999, vol. 299, pp. 697–723.

    Google Scholar 

  • Cavalazzi, B., Microbially induced fabrics from a Lower Miocene cold seep ecosystem (western Sicily, Italy), Grzybowski Foundation Special Publication, 2007, vol. 12, pp. 7–13.

    Google Scholar 

  • Cavalazzi, B., Barbieri, R., Cady, S.L., George, A.D., Gennaro, S., et al., Iron-framboids in the hydrocarbon-related Middle Devonian Hollard Mound of the Anti-Atlas mountain range in Morocco: Evidence of potential microbial biosignatures, Sed. Geol., 2012, vols. 263–264, pp. 183–193.

    Google Scholar 

  • Chen, D.F., Liu, Q., Zhang, Z., Cathles, L.M. III, and Roberts, H.H., Biogenic fabrics in seep carbonates from an active gas vent site in Green Canyon Block 238, Gulf of Mexico, Mar. Petrol. Geol., 2007, vol. 24, pp. 313–320.

    Google Scholar 

  • Christensen, P.R., Wyatt, M.B., Glotch, T.D., Rogers, A.D., Anwar, S., et al., Mineralogy at Meridiani planum from the Mini-TES experiment on the opportunity rover, Science, 2004, vol. 306, pp. 1733–1739.

    Google Scholar 

  • Cody, G.D., Boctor, N.Z., Filley, T.R., Hazen, R.M., Scott, J.H., Sharma, A., and Yoder Jr., H.S., Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate, Science, 2000, vol. 289, pp. 1337–1340.

    Google Scholar 

  • Craig, J.R. and Vokes, F.M., The metamorphism of pyrite and pyritic ores—an overview, Mineral. Mag., 1993, vol. 57, pp. 3–18.

    Google Scholar 

  • Deditius, A.P., Utsunomiya, S., Reich, M., Kesler, S.E., Ewing, R.C., et al., Trace metal nanoparticles in pyrite, Ore Geol. Rev., 2011, vol. 42, pp. 32–46.

    Google Scholar 

  • Ebel, D.S., Sulfur in extraterrestrial bodies and the deep Earth, Rev. Mineral. Geochem., 2011, vol. 73, pp. 315–336.

    Google Scholar 

  • Edwards, K.J., Formation and degradation of seafloor hydrothermal sulfide deposits, Geol. S. Am. S, 2004, vol. 379, pp. 83–96.

    Google Scholar 

  • El Albani, A., Bengtson, S., Canfield, D., Bekker, A., and Macchiarelli, R., Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago, Nature, 2010, vol. 466, pp. 100–104.

    Google Scholar 

  • El Aref, M.M., Strata-bound and stratiform iron sulfides, sulfur and galena in the Miocene evaporites, Ranga, Red Sea, Egypt, in Syngenesis and Epigenesis in the Formation of Mineral Deposits, Wauschkuhn, A., Kluth, C., Zimmer-mann, R.A., Eds., Heidelberg: Springer, 1984.

    Google Scholar 

  • Ellmer, K. and Höpfner, C., On the stoichiometry of the semiconductor pyrite (FeS2), Philos. Mag., 1997, vol. A75, pp. 1129–1151.

    Google Scholar 

  • Emerson, S.R. and Huested, S.S., Ocean anoxia and the concentrations of molybdenum and vanadium in seawater, Marine Chemistry, 1991, vol. 34, pp. 177–196.

    Google Scholar 

  • England, G.L., Rasmussen, B., Krapez, B., and Groves, D.I., Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen-deficient atmosphere or hydrothermal alteration?, Sedimentology, 2002, vol. 49, pp. 1133–1156.

    Google Scholar 

  • Fairén, A.G., Schulze-Makuch, D., Rodríguez, A.P., Fink, W., Davila, A.F., et al., Evidence for Amazonian acidic liquid water on Mars—A reinterpretation of MER mission results, Planet. Space Sci., 2009, vol. 57, pp. 276–287.

    Google Scholar 

  • Farquhar, J., Bao, H., and Thiemens, M., Atmospheric influence of Earth’s earliest sulfur cycle, Science, 2000, vol. 289, pp. 756–758.

    Google Scholar 

  • Farquhar, J. and Wing, B.A., Multiple sulfur isotopes and the evolution of the atmosphere, Earth Planet. Sci. Let., 2003, vol. 213, pp. 1–13.

    Google Scholar 

  • Farquhar, J., Wu, N., Canfield, D.E., and Oduro, H., Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits, Econ. Geol., 2011, vol. 105, pp. 509–533.

    Google Scholar 

  • Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R., and Knoll, A.H., The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 149–167.

    Google Scholar 

  • Fitz, D., Reiner, H., and Rode, B.M., Chemical evolution toward the origin of life, Pure Appl. Chem., 2007, vol. 79, pp. 2101–2117.

    Google Scholar 

  • Freitag, K., Boyle, A.P., Nelson, E., Hitzman, M., Churchill, J., and Lopex-Pedrosa, M., The use of electron backscatter diffraction and orientationcontrast imaging as tools for sulphide textural studies: example from the Greens Creek deposit (Alaska), Miner. Deposita, 2004, vol. 39, pp. 103–113.

    Google Scholar 

  • Frimmel, H.E., Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa, Earth-Sci. Rev., 2005, vol. 70, pp. 1–46.

    Google Scholar 

  • Frizzo, P., Rampazzo, G., and Molinaroli, E., Authigenic iron sulphides in Recent sediments of the Venice Lagoon (northern Italy), Eur. J. Mineral., 1991, vol. 3, pp. 603–612.

    Google Scholar 

  • García-Guinea, J., Martínez-Frías, J., González-Martín, R., and Zamora, L., Framboidal pyrites in antique books, Nature, 1997, vol. 388, pp. 631–631.

    Google Scholar 

  • García-Guinea, J., Martínez-Frías, J., and Harffy, M., Cell-hosted pyrite framboids in fossil woods, Naturwissenschaften, 1998, vol. 85, pp. 1–5.

    Google Scholar 

  • Garty, J., Giele, C., and Kumberlein, W.E., On the occurrence of pyrite in a lichen-like inclusion in Eocene amber (Baltic), Palaeogeogr. Palaeoclimatol. Palaeoecol., 1982, vol. 39, pp. 139–147.

    Google Scholar 

  • Goldhaber, M.B., Sulfur-rich sediments, in Treatise on Geochemistry, Mackenzie, F.T., Ed., Sediments, Diagenesis, and Sedimentary Rocks, Amsterdam: Elsevier, 2003, vol. 7.

    Google Scholar 

  • Gong, Y.M., Shi, G.R., Weldon, E.A., Du, Y.S., and Xu, R., Pyrite framboids interpreted as microbial colonies within the Permian Zoophycos spreiten from southeastern Australia, Geol. Mag., 2008, vol. 145, pp. 95–103.

    Google Scholar 

  • Grimes, S.T., Brock, F., Rickard, D., Davies, K.L., Edwards, D., et al., Understanding fossilization: experimental pyritization of plants, Geology, 2001, vol. 29, pp. 123–126.

    Google Scholar 

  • Grimes, S.T., Davies, K.L., Butler, I.B., Brock, F., Edwards, D., et al., Fossil plants from the Eocene London Clay: the use of pyrite textures to determine the mechanism of pyritization, J. Geol. Soc. Lond., 2002, vol. 159, pp. 493–501.

    Google Scholar 

  • Guy, B.M., Beukes, N.J., and Gutzmer, J., Paleoenvironmental controls the texture and chemical composition of pyrite from nonconglomeratic sedimentary rocks of the Mesoarchaean Witwatersrand Supergroup, South Africa, S. Afr. J. Geol., 2010, vol. 113, pp. 195–228.

    Google Scholar 

  • Habashi, F., Pyrite. History, Chemistry, and Metallurgy, 2012, Métallurgie Extractive Québec, Quebec City, Canada, available at: http://works.bepress.com/fathi-habashi/103

    Google Scholar 

  • Hatchett, C., Analysis of a triple sulphured of lead, antimony and copper, from Cornwall, Philos. Trans., 1804, vol. 94, pp. 63–69.

    Google Scholar 

  • Hofmann, A., Bekker, A., Rouxel, O., Rumble, D., and Master, S., Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis, Earth Planet. Sci. Lett., 2009, vol. 286, pp. 436–445.

    Google Scholar 

  • Holland, H.D., The Chemical Evolution of the Atmosphere and Oceans, New York: Princeton University Press, 1984.

    Google Scholar 

  • Hu, J., Yanning Zhang, Y., Law, M., and Wu, R., First-principles studies of the electronic properties of native and substitutional anionic defects in bulk iron pyrite, Phys. Rev., 2012, vol. B85, pp. 085–203.

    Google Scholar 

  • Hudson, J.D., Pyrite in ammonite-bearing shales from the Jurassic of England and Germany, Sedimentology, 1982, vol. 29, pp. 639–667.

    Google Scholar 

  • Huerta-Diaz, M.A. and Morse, J.W., Pyritization of trace metals in anoxic marine sediments, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 2681–2702.

    Google Scholar 

  • Iberall-Robbins, E. and Iberall, A.S., Mineral remains of early life on Earth? On Mars?, Geomicrobiol. J., 1991, vol. 9, pp. 51–66.

    Google Scholar 

  • Johnson, D.B. and Hallberg, K.B., Acid mine drainage remediation options: a review, Sci. Total Environ., 2005, vol. 338, pp. 3–14.

    Google Scholar 

  • Johnston, D.T., Roden, E.E., Welch, S.A., and Beard, B.L., Active microbial sulfur disproportionation in the Mesoproterozoic, Science, 2005, vol. 310, pp. 1477–1479.

    Google Scholar 

  • Johnston, D.T., Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle, Earth-Sci. Rev., 2011, vol. 106, pp. 161–183.

    Google Scholar 

  • Kammer, T.W. and Ausich, W.I., New cladid and flexible crinoids from the Mississippian (Tournaisian, Ivorian) of the England and Whales, Palaeontology, 2007, vol. 50, pp. 1039–1050.

    Google Scholar 

  • Kaplan, I.R. and Rittenberg, S.C., Microbiological fractionation of sulphur isotopes, J. Gen. Microbiol., 1964, vol. 34, pp. 195–212.

    Google Scholar 

  • Kohn, M.J., Riciputi, L.R., Stakes, D., and Orange, D.L., Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization?, Am. Mineral., 1998, vol. 83, pp. 1454–1468.

    Google Scholar 

  • Kullerud, G. and Yoder, H.S., Pyrite stability relations in the Fe-S system, Econ. Geol., 1959, vol. 54, pp. 533–572.

    Google Scholar 

  • Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., et al., Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits, Econ. Geol., 2009, vol. 104, pp. 635–668.

    Google Scholar 

  • Large R.R., Bull, S.W., and Maslennikov, V.V., A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits, Econ. Geol. and the Bulletin of the Society of Economic Geologists, 2011, vol. 106, no. 3, pp. 331–358.

    Google Scholar 

  • Lindgren, P., Parnell, J., Holm, N., and Broman, K., A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting, Geochem. T., 2011, vol. 12, p. 3.

    Google Scholar 

  • Liu, W. and Zhang, X.-L., Evidence for microbial dissolution of pyrite from the Lower Cambrian oolitic limestone, South China, Biogeosciences Discuss, 2011, vol. 8, pp. 2035–2056.

    Google Scholar 

  • Love, L.G., Microorganisms and the presence of syngenetic pyrite, Quarterly Journal, Geological Society, London, 1957, vol. 113, pp. 429–440.

    Google Scholar 

  • Love, L.G., Early diagenetic polyframboidal pyrite, primary and redeposited, from the Wenlockian Denbigh Grit Group, Conway, NorthWales, U.K., J. Sediment. Petrol., 1971, vol. 41, pp. 1038–1044.

    Google Scholar 

  • Lyons, T.W. and Gill, B.C., Ancient sulfur cycling and oxygenation of the early biosphere, Elements, 2010, vol. 6, pp. 93–99.

    Google Scholar 

  • Malcom, S.J., Early diagenesis of molybdenum in estuarine sediments, Mar. Chem., 1985, vol. 16, pp. 213–225.

    Google Scholar 

  • Marini, L., Moretti, R., and Accornero, M., Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas, Rev. Mineral. Geochem., 2011, vol. 73, pp. 423–492.

    Google Scholar 

  • Marin-Carbonne, J., Rollion-Bard, C., Bekker, A., Rouxel, O., Agangi, A., Cavalazzi, B., Wohlgemuth-Ueberwasser, C.C., Hofmann, A., and McKeegan, K.D., Coupled Fe and S isotope variations in pyrite nodules from Archean shales, Earth Plan. Sci. Lett., vol. 392, pp. 67–79.

  • Massaad, M., Framboidal pyrite concretions, Mineral. Deposita, 1974, vol. 9, pp. 87–89.

    Google Scholar 

  • McLennan, S.M., Bell, J.F. III, Calvin, W.M., Christensen, P.R., Clark, B.C., de Souza, P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R., Ghosh, A., Glotch, T.D., Grotzinger, J.P., Hahn, B., Herkenhoff, K.E., Hurowitz, J.A., Johnson, J.R., Johnson, S.S., Jolliff, B., Klingelhöfer, G., Knoll, A.H., Learner, Z., Malin, M.C., McSween Jr., H.-Y., Pocock, J., Ruff, S.W., Soderblom, L.A., Squyres, S.W., Tosca, N.J., Watters, W.A., Wyatt, M.B., and Yen, A., Provenance and diagenesis of the evaporate bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 95–121.

    Google Scholar 

  • Merinero, R., Lunar, R., Martínez-Frías, J., Somoza, L., and Díaz-del-Río, V., Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula), Mar. Petrol. Geol., 2008, vol. 25, pp. 706–713.

    Google Scholar 

  • Morse, J.W. and Luther, G.W. III, Chemical influences on trace metalsulfide interactions in anoxic sediments, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 3373–3378.

    Google Scholar 

  • Murphy, R. and Strongin, D.R., Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep., 2009, vol. 64, pp. 1–45.

    Google Scholar 

  • Nardi, S., Binda, P.L., Bacelle, L.S., and Concheri, G., Amino acids of Proterozoic and Ordovician sulfide-coated grains from western Canada: record of biologically mediated pyrite precipitation, Chem. Geol., 1994, vol. 111, pp. 1–15.

    Google Scholar 

  • Nasr-El-Din, H.A., Al-Humaidan, A.Y., Mohamed, S.K., and Al-Salman, A.M., Iron sulfide formation in water supply wells with gas lift, Proc. SPE International Symposium on Oilfield Chemistry, Houston, Texas, 2001.

    Google Scholar 

  • Ohfuji, H. and Rickard, D., Experimental syntheses of framboids—a review, Earth Sci. Rev., 2005, vol. 71, pp. 147–170.

    Google Scholar 

  • Ohmoto, H. and Kakegawa, T., 3.4-billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence, Science, 1993, vol. 262, p. 555.

    Google Scholar 

  • Ono, S., Multiple-sulphur isotope biosignatures, Space Sci. Rev., 2008, vol. 135, pp. 203–220.

    Google Scholar 

  • Orphan, V.J., House, C.H., Hinrichs, K.U., McKeegan, K.D., and DeLong, E.F., Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediment, P. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 7663–7668.

    Google Scholar 

  • Passier, H.F., Middelburg, J.J., de Lange, G.J., and Böttcher, M.E., Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel, Geology, 1997, vol. 25, pp. 519–522.

    Google Scholar 

  • Pavlov, A.A. and Kasting, J.F., Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere, Astrobiology, 2002, vol. 2, pp. 2741.

    Google Scholar 

  • Peckmann, J. and Thiel, V., Carbon cycling at ancient methane-seeps, Chem. Geol., 2004, vol. 205, pp. 443–467.

    Google Scholar 

  • Pirajno, F., Hydrothermal Processes and Mineral Systems, Springer-Verlag, 2009.

    Google Scholar 

  • Piper, D.Z. and Calvert, S.E., A marine biogeochemical perspective on black shale deposition, Earth-Sci. Rev., 2009, vol. 95, pp. 63–96.

    Google Scholar 

  • Popa, R., Badescu, A., and Kinkle, B.K., Pyrite framboids as biomarkers for iron-sulfur systems, Geomicrobiol. J., 2004, vol. 21, pp. 1–14.

    Google Scholar 

  • Raiswell, R., Buckley, F., Berner, R.A., and Anderson, T.F., Degree of pyritization of iron as a paleoenvironmental indicator of bottom water oxygenation, J. Sed. Petrol., 1988, vol. 58, pp. 812–819.

    Google Scholar 

  • Raiswell, R. and Canfield, D.E., Sources of iron for pyrite formation, Am. J. Sci., 1998, vol. 298, pp. 219–245.

    Google Scholar 

  • Reaves, C.M., The migration of iron and sulfur during the early diagenesis of marine sediments, Ph.D. Dissertation, New Haven, Ct., Yale Univ., 1984.

    Google Scholar 

  • Rickard, D. and Morse, J.W., Acid volatile sulfide (AVS), Mar. Chem., 2005, vol. 97, pp. 141–197.

    Google Scholar 

  • Rickard, D. and Luther, G.W. III, Chemistry of iron sulfides, Chem. Rev., 2007, vol. 107, pp. 514–562.

    Google Scholar 

  • Ritger, S., Carson, B., and Suess, E., Methane-derived authigenic carbonates formed by subduction-induced porewater expulsion along the Oregon/Washington margin, Geol. Soc. Am. Bull., 1987, vol. 98, pp. 147–156.

    Google Scholar 

  • Rust, G.W., Colloidal primary copper ores at Cornwall Mines, southeastern Missouri, J. Geol., 1935, vol. 43, pp. 398–426.

    Google Scholar 

  • Schieber, J., Ways in which organic petrology could contribute to a better understanding of black shales, Int. J. Coal Geol., 2001, vol. 47, pp. 171–187.

    Google Scholar 

  • Schieber, J., Sedimentary pyrite: a window into the microbial past, Geology, 2002a, vol. 30, pp. 531–534.

    Google Scholar 

  • Schieber, J., The role of an organic slime matrix in the formation of pyritized burrow trails and pyrite concretions, Palaios, 2002b, vol. 17, pp. 104–109.

    Google Scholar 

  • Schieber, J. and Riciputi, L., Pyrite ooids in Devonian black shales record intermittent sea-level drop and shallow-water conditions, Geology, 2004, vol. 32, pp. 305–308.

    Google Scholar 

  • Schieber, J. and Riciputi, L., Pyrite and marcasite coated grains in the Ordovician Winnipeg formation, Canada: An intertwined record of surface conditions, stratigraphic condensation, geochemical “reworking,” and microbial activity, J. Sediment. Res., 2005, vol. 75, pp. 907–920.

    Google Scholar 

  • Schieber, J., Oxidation of detrital pyrite as a cause for marcasite formation in marine lag deposits from the Devonian of the eastern US, Deep-SeaRes. II, 2007, vol. 54, pp. 1312–1326.

    Google Scholar 

  • Schieber, J., Marcasite in Black Shales—a Mineral proxy for oxygenated bottom waters and intermittent oxidation of carbonaceous muds, 20111, J. Sediment. Res., vol. 81, pp. 447–458.

    Google Scholar 

  • Schieber, J., Iron sulfide formation, in Encyclopedia of Geobiology, Reitner, J. and Thiel, V. Eds., Dordrecht: Springer, 20112.

    Google Scholar 

  • Schneiderhöhn, H., Chalkographische untersuchung des mansfelder kupferschiefers, Neues Jahrb. Geol., 1923, vol. P-A 47, pp. 1–38.

    Google Scholar 

  • Schoonen, M.A.A., Mechanisms of sedimentary pyrite formation, GSA Special Paper, 2004, vol. 379, pp. 117–134.

    Google Scholar 

  • Scott, S.D., Chemical behavior of sphalerite and arsenopyrite in hydrothermal and metamorphic environments, Mineral. Mag., 1983, vol. 47, pp. 427–435.

    Google Scholar 

  • Scott, R.J., Meffre, S., Woodhead, J., Gilbert, S.E., Berry, R.F., et al., Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration, Econ. Geol., 2009, vol. 104, pp. 1143–1168.

    Google Scholar 

  • Seal, R.R., Sulfur isotope geochemistry of sulfide minerals, Rev. Mineral. Geochem., 2006, vol. 61, pp. 633–677.

    Google Scholar 

  • Shen, Y., Buick, R., and Canfield, D.E., Isotopic evidence for microbial sulphate reduction in the early Archaean era, Nature, 2001, vol. 410, pp. 77–81.

    Google Scholar 

  • Shen, Y. and Buick, R., The antiquity of microbial sulphate, Earth-Sci. Rev., 2004, vol. 64, pp. 243–272.

    Google Scholar 

  • Squyres, S.W. and Knoll, A.H., Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 1–10.

    Google Scholar 

  • Stetter, K.O., Hyperthermophiles in the history of life, in Evolution of Hydrothermal Ecosystems on Earth (and Mars?), Bock, G.R. and Goode, J.A., Eds., New York: Wiley and Sons, 1996.

    Google Scholar 

  • Stumm, W. and Morgan, J.J., Aquatic Chemistry, New York: Wiley, 1996.

    Google Scholar 

  • Suzuki, I., Microbial leaching of metals from sulfide minerals, Biotechnol. Adv., 2001, vol. 19, pp. 119–132.

    Google Scholar 

  • Taylor, K.G. and Macquaker, J.H.S., Early diagenetic pyrite morphology in a mudstone-dominated succession: the lower Jurassic Cleveland Ironstone formation, eastern England, Sed. Geol., 2000, vol. 131, pp. 77–86.

    Google Scholar 

  • Thode, H.G. and Goodwin, A.M., Further sulfur and carbon isotope studies of Late Archean Iron-Formations of the canadian shield and the rise of sulfate reducing bacteria, Precambrian Res., 1983, vol. 20, pp. 337–356.

    Google Scholar 

  • Thomas, J.E., Skinner, W.M., and Smart, R.S.C., A comparison of the dissolution behavior of troilite with other iron(II) sulphides; implications of structure, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 831–843.

    Google Scholar 

  • Vaughan, D.J., Sulfide Mineralogy and Geochemistry, Rev. Mineral. Geochem., 2006, vol. 61, Geochemical Society, Mineralogical Society of America.

  • Wacey, D., Saunders, M., Brasier, M.D., and Kilburn, M.R., Earliest microbially mediated pyrite oxidation in ∼3.4 billion-year-old sediments, Earth Planet. Sci. Lett., 2011, vol. 301, pp. 393–402.

    Google Scholar 

  • Wächtershäuser, G., Life as we don’t know it, Science, 2000, vol. 289, pp. 1307–1308.

    Google Scholar 

  • Wang, Q. and Morse, J.W., Pyrite formation under conditions approximating those in anoxic sediments; I. Pathway and morphology, Mar. Chem., 1996, vol. 52, pp. 99–121.

    Google Scholar 

  • Weiner, S. and Dove, P.M., An Overview of biomineralization processes and the problem of the vital effect, Rev. Mineral. Geochem., 2003, vol. 54, no. 1, pp. 1–29.

    Google Scholar 

  • Whitehouse, M.J., Kamber, B.S., Fedo, C.M., and Lepland, A., Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland, Chem. Geol., 2005, vol. 222, pp. 112–131.

    Google Scholar 

  • Wilkin, R.T. and Barnes, H.L., Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulphur species, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 4167–4179.

    Google Scholar 

  • Wilkin, R.T., Barnes, H.L., and Brantley, S.L., The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3897–3912.

    Google Scholar 

  • Wilkin, R.T. and Barnes, H.L., Formation processes of framboidal pyrite, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 323–339.

    Google Scholar 

  • Wood, C.R., Water quality of large discharges from mines in the anthracite region of eastern Pennsylvania: U.S. geological survey water-resources investigations, Report 95–4243, 1996.

  • Zimmermann, R.A. and Spreng, A.C., Sedimentary and diagenetic features in the sulfide-bearing sedimentary dikes and strata of Lower Ordovician dolomites, Decaturville, Missouri, U.S.A., in Syngenesis and Epigenesis in the Formation of Mineral Deposits, Wanschkuhn, A., Kluth, C., and Zimmermann, R.A., Eds., Heidelberg: Springer, 1984.

    Google Scholar 

  • Zolotov, M.Y. and Shock, E.L., Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars, Geophys. Res. Lett., 2005, vol. 32, p. L21203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Cavalazzi.

Additional information

Original Russian Text © B. Cavalazzi, A. Agangi, R. Barbieri, F. Franchi, G. Gasparotto, 2014, published in Geologiya Rudnykh Mestorozhdenii, 2014, Vol. 56, No. 5, pp. 440–452.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalazzi, B., Agangi, A., Barbieri, R. et al. The formation of low-temperature sedimentary pyrite and its relationship with biologically-induced processes. Geol. Ore Deposits 56, 395–408 (2014). https://doi.org/10.1134/S107570151405002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107570151405002X

Keywords

Navigation