Skip to main content
Log in

First Synthesis of a New Class of Spiro-boracarbocycles by Cp2TiCl2-Catalyzed Cycloboration of Methylidene­cycloalkanes with PhBCl2

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Cycloboration of methylidenecycloalkanes with PhBCl2 in the presence of Cp2TiCl2 as catalyst was performed for the first time to afford previously unknown spiro-boracarbocycles in 70–80% yields. The structure and properties of the obtained spiro-boriranes were studied by 11B, 1H, and 13C NMR and DOSY experi­ments. 1-Phenyl-substituted boraspiranes were found to be stable in solution at room temperature for 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Fig. 1.
Scheme
Scheme
Fig. 2.
Scheme
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Khusainova, L.I., Khafizova, L.O., Tyumkina, T.V., Ryazanov, K.S., and Dzhemilev, U.M., J. Organomet. Chem., 2017, vol. 832, p. 12. https://doi.org/10.1016/j.jorganchem.2017.01.009

    Article  CAS  Google Scholar 

  2. Khusainova, L.I., Khafizova, L.O., Tyumkina, T.V., and Dzhemilev, U.M., Russ. J. Org. Chem., 2015, vol. 51, p. 1517. https://doi.org/10.1134/S1070428015110019

    Article  CAS  Google Scholar 

  3. Khusainova, L.I., Khafizova, L.O., Tyumkina, T.V., and Dzhemilev, U.M., Russ. J. Gen. Chem., 2016, vol. 86, p. 1038. https://doi.org/10.1134/S1070363216060335

    Article  CAS  Google Scholar 

  4. Khusainova, L.I., Khafizova, L.O., Tyumkina, T.V., Ryazanov, K.S., Popodko, N.R., and Dzhemilev, U.M., J. Organomet. Chem., 2018, vol. 873, p. 73. https://doi.org/10.1016/j.jorganchem.2018.08.005

    Article  CAS  Google Scholar 

  5. Dzhemilev, U.M., Khusainova, L.I., Ryazanov, K.S., and Khafizova, L.O., Russ. Chem. Bull., Int. Ed., 2021, vol. 70, p. 1851. https://doi.org/10.1007/s11172-021-3292-2

    Article  CAS  Google Scholar 

  6. Rao, Y.-L., Amarne, H., Zhao, S.-B., McCormick, T.M., Martić, S., Sun, Y., Wang, R.-Y., and Wang, S., J. Am. Chem. Soc., 2008, vol. 130, p. 12898. https://doi.org/10.1021/ja8052046

    Article  CAS  Google Scholar 

  7. Baik, C., Hudson, Z.M., Amarne, H., and Wang, S., J. Am. Chem. Soc., 2009, vol. 131, p. 14549. https://doi.org/10.1021/ja906430s

    Article  CAS  Google Scholar 

  8. Rao, Y.-L., Amarne, H., and Wang, S., Coord. Chem. Rev., 2012, vol. 256, p. 759. https://doi.org/10.1016/j.ccr.2011.11.009

    Article  CAS  Google Scholar 

  9. Mellerup, S.K. and Wang, S., Sci. China Mater., 2018, vol. 61, p. 1249. https://doi.org/10.1007/s40843-018-9306-8

    Article  CAS  Google Scholar 

  10. McFadden, T.R., Fang, Ch., Geib, S.J., Merling, E., Liu, P., and Curran, D.P., J. Am. Chem. Soc., 2017, vol. 139, p. 1726. https://doi.org/10.1021/jacs.6b09873

    Article  CAS  Google Scholar 

  11. Dai, W., McFadden, T.R., Curran, D.P., Früchtl, H.A., and Walton, J.C., J. Am. Chem. Soc., 2018, vol. 140, p. 15868. https://doi.org/10.1021/jacs.8b09288

    Article  CAS  Google Scholar 

  12. Bissinger, P., Braunschweig, H., Kraft, K., and Kupfer, T., Angew. Chem., Int. Ed., 2011, vol. 50, p. 4704. https://doi.org/10.1002/anie.201007543

    Article  CAS  Google Scholar 

  13. Braunschweig, H., Claes, C., Damme, A., Deißen­berger, A., Dewhurst, R.D., Hörl, C., and Kramer, T., Chem. Commun., 2015, vol. 51, p. 1627. https://doi.org/10.1039/c4cc09036e

    Article  CAS  Google Scholar 

  14. Wehrmann, R., Klusik, H., and Berndt, A., Angew. Chem., Int. Ed., 1984, vol. 23, p. 369. https://doi.org/10.1002/anie.198403691

    Article  Google Scholar 

  15. Klusik, H. and Berndt, A., Angew. Chem., Int. Ed., 1983, vol. 22, p. 877. https://doi.org/10.1002/anie.198308771

    Article  Google Scholar 

  16. Pues, C., Baum, G., Massa, W., and Berndt, A., Z. Natur­forsch., Teil B, 1988, vol. 43, p. 275. https://doi.org/10.1515/znb-1988-0307

    Article  CAS  Google Scholar 

  17. Glaser, B., Mayer, E.P., Nöth, H., Rattay, W., and Wietelmann, U., Z. Naturforsch., Teil B, 1988, vol. 43, p. 449. https://doi.org/10.1515/znb-1988-0411

    Article  CAS  Google Scholar 

  18. Balzereit, C., Kybart, C., Winkler, H.-J., Massa, W., and Berndt, A., Angew. Chem., Int. Ed., 1994, vol. 33, p. 1487. https://doi.org/10.1002/anie.199414871

    Article  Google Scholar 

  19. Mayer, P. and Noth, H., Chem. Ber., 1993, vol. 126, p. 1551. https://doi.org/10.1002/cber.19931260708

    Article  CAS  Google Scholar 

  20. Wrackmeyer, B., Annu. Rep. NMR Spectrosc., 1988, vol. 20, p. 61. https://doi.org/10.1016/s0066-4103(08)60170-2

    Article  CAS  Google Scholar 

  21. Brown, H.C. and Zaidlewicz, M., J. Am. Chem. Soc., 1976, vol. 98, p. 4917. https://doi.org/10.1021/ja00432a037

    Article  CAS  Google Scholar 

  22. Klebe, J.F., Finkbeiner, H., and White, D.M., J. Am. Chem. Soc., 1966, vol. 88, p. 3390. https://doi.org/10.1021/ja00966a038

    Article  CAS  Google Scholar 

  23. Wilkey, J.D. and Schuster, G.B., J. Am. Chem. Soc., 1991, vol. 113, p. 2149. https://doi.org/10.1021/ja00006a037

    Article  CAS  Google Scholar 

  24. Midland, M.M. and Brown, H.C., J. Am. Chem. Soc., 1973, vol. 95, p. 4069. https://doi.org/10.1021/ja00793a052

    Article  CAS  Google Scholar 

  25. Sobota, P., Pluzinski, T., Jezowska-Trzebiatowska, B., and Rummel, S., J. Organomet. Chem., 1980, vol. 185, p. 69. https://doi.org/10.1016/s0022-328x(00)94401-2

    Article  CAS  Google Scholar 

  26. Eisch, J.J., Boleslawski, M.P., and Tamao, K., J. Org. Chem., 1989, vol. 54, p. 1627. https://doi.org/10.1021/jo00268a025

    Article  CAS  Google Scholar 

  27. Tomboulian, P., Amick, D., Beare, S., Dumke, K., Hart, D., Hites, R., Metzger, A., and Nowak, R., J. Org. Chem., 1973, vol. 38, p. 322. https://doi.org/10.1021/jo00942a026

    Article  CAS  Google Scholar 

  28. Fitjer, L. and Quabeck, U., Synth. Commun., 1985, vol. 15, p. 855. https://doi.org/10.1080/00397918508063883

    Article  CAS  Google Scholar 

  29. Wittig, G. and Schoellkopf, U., Org. Synth., 1960, vol. 40, p. 66. https://doi.org/10.15227/orgsyn.040.0066

    Article  CAS  Google Scholar 

  30. Barluenga, J., Fernández-Simón, J.L., Concellón, J.M., and Yus, M., J. Chem. Soc., Perkin Trans. 1, 1988, p. 3339. https://doi.org/10.1039/p19880003339

  31. Lebel, H., Davi, M., Díez-González, S., and Nolan, S.P., J. Org. Chem., 2007, vol. 72, p. 144. https://doi.org/10.1021/jo061781a

    Article  CAS  Google Scholar 

  32. Masuda, Y., Ikeshita, D., and Murakami, M., Helv. Chim. Acta, 2021, vol. 104, article ID e2000228. https://doi.org/10.1002/hlca.202000228

  33. Kobayashi, S., Kawamoto, T., Uehara, S., Fukuyama, T., and Ryu, I., Org. Lett., 2010, vol. 12, p. 1548. https://doi.org/10.1021/ol1002847

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Spectral studies were performed at the Agidel regional joint center (Ufa Federal Research Center, Russian Academy of Sciences).

Funding

This study was financially supported in the framework of state assignment no. FMRS-2022-0075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Tulyabaeva.

Ethics declarations

The authors declare the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulyabaeva, L.I., Salakhutdinov, R.R., Tyumkina, T.V. et al. First Synthesis of a New Class of Spiro-boracarbocycles by Cp2TiCl2-Catalyzed Cycloboration of Methylidene­cycloalkanes with PhBCl2. Russ J Org Chem 58, 1902–1908 (2022). https://doi.org/10.1134/S107042802212020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802212020X

Keywords:

Navigation