Skip to main content
Log in

Synthesis of 3-Pyrazolyl-4H-1,2,4-triazoles Using Fe3O4@SiO2@Tannic Acid Nanoparticles as an Efficient, Green, and Magnetically Separable Catalyst

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Tannic acid‐functionalized silica‐coated Fe3O4 nanoparticles (Fe3O4@SiO2@tannic acid) were synthesized and characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometry (VSM), and Fourier-transform infrared spectroscopy (FT-IR). The synthesized catalyst was utilized in environmentally friendly procedure for the preparation of some novel 3-pyrazolyl-4H-1,2,4-triazoles through a one-pot three-component reaction of semicarbazide, alcohols, and pyrazolecarbaldehydes. The catalyst can be reused for six cycles without loss of its catalytic activity. The structure of the newly synthesized 3-pyrazolyl-4H-1,2,4-triazole derivatives was confirmed by 1H and 13C NMR and FTIR spectral data and elemental analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Yeung, K.S. and Farkas, M.E., Tetrahedron Lett., 2005, vol. 46, p. 3429. https://doi.org/10.1016/j.tetlet.2005.02.167

    Article  CAS  Google Scholar 

  2. Huntsman, E. and Balsells, J., Eur. J. Org. Chem., 2005, vol. 2005, p. 3761. https://doi.org/10.1002/ejoc.200500247

    Article  CAS  Google Scholar 

  3. Zhou, H.C. and Wang, Y., Curr. Med. Chem., 2012, vol. 19, p. 239. https://doi.org/10.2174/092986712803414213

    Article  CAS  PubMed  Google Scholar 

  4. Ueda, S. and Nagasawa, H., J. Am. Chem. Soc., 2009, vol. 131, p. 15080. https://doi.org/10.1021/ja905056z

    Article  CAS  PubMed  Google Scholar 

  5. Yin, P., Ma, W.B., Chen, Y., Huang, W.C., Deng, Y., and He, L., Org. Lett., 2009, vol. 11, p. 5482. https://doi.org/10.1021/ol902207h

    Article  CAS  PubMed  Google Scholar 

  6. Hutchinson, S.M., Ardón-Muñoz, L.G., Ratliff, M.L., and Bolliger, J.L., ACS Omega, 2019, vol. 4, p. 17923. https://doi.org/10.1021/acsomega.9b03109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noël, R., Song, X., Jiang, R., Chalmers, M.J., Griffin, P.R., and Kamenecka, T.M., J. Org. Chem., 2009, vol. 74, p. 7595. https://doi.org/10.1021/jo9016502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ünver, Y., Deniz, S., Çelik, F., Akar, Z., Küçük, M., and Sancak, K., J. Enzyme Inhib. Med. Chem., 2016, vol. 31, p. 89. https://doi.org/10.1080/14756366.2016.1206088

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Sh., Li, Q.Sh., and Su, M.G., J. Chem. Eng. Data, 2007, vol. 52, p. 856. https://doi.org/10.1021/je060452c

    Article  CAS  Google Scholar 

  10. Nikpassand, M. and Jafari Farshami, M., J. Cluster Sci., 2021, vol. 32, p. 975. https://doi.org/10.1007/s10876-020-01855-y

    Article  CAS  Google Scholar 

  11. Xu, Y., Mclaughlin, M., Bolton, E.N., and Reamer, R.A., J. Org. Chem., 2010, vol. 75, p. 8666. https://doi.org/10.1021/jo1017603

    Article  CAS  PubMed  Google Scholar 

  12. Frédérique, M., René, M., and Géo, B., J. Heterocycl. Chem., 1984, vol. 21, p. 1689. https://doi.org/10.1002/jhet.5570210624

    Article  Google Scholar 

  13. Reichelt, A., Rzasa, J.R.M., Thiel, O.R., Achmato­wiez, M., Larsen, R.D., and Zhang, D., Org. Lett., 2010, vol. 12, p. 792. https://doi.org/10.1021/ol902868q

    Article  CAS  PubMed  Google Scholar 

  14. Goswami, B.N., Kataky, J.C.S., and Baruah, J.N., J. Heterocycl. Chem., 1984, vol. 21, p. 1225. https://doi.org/10.1002/jhet.5570210460

    Article  CAS  Google Scholar 

  15. Rezaei, A., Ramazani, A., Gouranlou, F., and Sang, W.J., Lett. Org. Chem. 2017, vol. 14, p. 86. https://doi.org/10.2174/1570178614666170126154256

  16. Fardood, S.T., Ramazani, A., and Moradi, S., J. Sol-Gel Sci., 2017, vol. 82, p. 432. https://doi.org/10.1007/s10971-017-4310-6

    Article  CAS  Google Scholar 

  17. Polshettiwar, V. and Varma, R.S., Green Chem., 2010, vol. 12, p. 743. https://doi.org/10.1039/B921171C

    Article  CAS  Google Scholar 

  18. Fihri, A., Bouhrara, M., Nekoueishahraki, B., Basset, J.M., and Polshettiwar, V., Chem. Soc. Rev., 2011, vol. 40, p. 5181. https://doi.org/10.1039/C1CS15079K

    Article  CAS  PubMed  Google Scholar 

  19. Zare Fekri, L., Nikpassand, M., Pourmirzajani, S., and Aghazadeh, B., RSC Adv., 2018, vol. 8, p. 22313. https://doi.org/10.1039/C8RA02572J

    Article  Google Scholar 

  20. Zare Fekri, L., Nikpassand, M., Shariati, S., Agha­zadeh, B., Zarkeshvari, R., and Norouz pour, N., J. Organomet. Chem., 2018, vol. 871, p. 60. https://doi.org/10.1016/j.jorganchem.2018.07.008

    Article  CAS  Google Scholar 

  21. Nikpassand, M., Zare, L., and Saberi, M., Monatsh. Chem., 2012, vol. 143, p. 289. https://doi.org/10.1007/s00706-011-0575-6

    Article  CAS  Google Scholar 

  22. Zare Fekri, L., Nikpassand, M., and Maleki, R., J. Mol. Liq., 2016, vol. 222, p. 77. https://doi.org/10.1016/j.molliq.2016.07.009

    Article  CAS  Google Scholar 

  23. Nikpassand, M., Zare Fekri, L., Karimian, L., and Rassa, M., Curr. Org. Synth., 2015, vol. 12, p. 358. https://doi.org/10.2174/1570179411666141101001949

    Article  CAS  Google Scholar 

  24. Nikpassand, M., Zare Fekri, L., and Nabatzadeh, M., Comb. Chem. High Throughput Screening, 2017, vol. 20, p. 533. https://doi.org/10.2174/1386207320666170425123248

    Article  CAS  Google Scholar 

  25. Nikpassand, M. and Pirdelzendeh, D., Dyes Pigm., 2016, vol. 130, p. 314. https://doi.org/10.1016/j.dyepig.2016.03.038

    Article  CAS  Google Scholar 

  26. Nikpassand, M., Zare Fekri, L., and Farokhian, P., Ultrason. Sonochem., 2016, vol. 28, p. 341. https://doi.org/10.1016/j.ultsonch.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  27. Nikpassand, M., Zare Fekri, L., and Sanagou, S., Dyes Pigm., 2017, vol. 36, p. 140. https://doi.org/10.1016/j.dyepig.2016.08.044

    Article  CAS  Google Scholar 

  28. Nikpassand, M., Zare Fekri, L., and Pourahmad, A., J. CO⁠2 Util., 2018, vol. 27, p. 320. https://doi.org/10.1016/j.jcou.2018.08.011

    Article  CAS  Google Scholar 

  29. Nikpassand, M., Dyes Pigm., 2020, vol. 173, article ID 107936. https://doi.org/10.1016/j.dyepig.2019.107936

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Research Council of Rasht Branch, Islamic Azad University, for the partial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nikpassand.

Ethics declarations

The authors declare the absence of conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshami, M.J., Nikpassand, M. & Fekri, L.Z. Synthesis of 3-Pyrazolyl-4H-1,2,4-triazoles Using Fe3O4@SiO2@Tannic Acid Nanoparticles as an Efficient, Green, and Magnetically Separable Catalyst. Russ J Org Chem 58, 905–912 (2022). https://doi.org/10.1134/S1070428022060215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022060215

Keywords:

Navigation