Skip to main content
Log in

Preparation of N-Aryl Anthranilic Acid Drugs by Modified Ullmann Coupling Reaction in Ionic Liquids

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

N-Aryl anthranilic acid drugs have been synthesized by a simple, environmentally friendly, low-cost, and high-yielding modified Ullmann coupling reaction protocol using potassium 2-bromobenzoate, substituted anilines, and copper acetate in tetrabutylphosphonium chloride ([TBP]Cl) ionic liquid. The optimal conditions have been found and applied to the synthesis of N-aryl anthranilic acid drugs at 170°C. Mass spectrometry, X-ray crystallography, and proton nuclear magnetic resonance were used to describe the structure of the products. Copper(I) complex catalyst was used as a starting catalyst for the Ullmann reaction because of the good fluidity and homogeneity in [TBP]Cl ionic liquid. Meclofenamic, mefenamic, clofenamic, and flufenamic acids were synthesized efficiently using the proposed general procedure. The distinct advantages of the described protocol are operational simplicity, cleaner reaction, high selectivity, excellent yield, rapid conversion, easy preparation, and the use of a low-cost catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Scheme
Scheme
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Rao, P.P.N., Kabir, S.N., and Tarek, M., Pharma­ceuticals, 2010, vol. 3, p. 1530. https://doi.org/10.3390/ph3051530

    Article  CAS  Google Scholar 

  2. Askonas, L.J. and Penning, T.M., Biochemistry, 1991, vol. 49, p. 11553. https://doi.org/10.1021/bi00113a010

    Article  Google Scholar 

  3. Pajor, A.M. and Sun, N.N., Biochemistry, 2013, vol. 17, p. 2924. https://doi.org/10.1021/bi301611u

    Article  CAS  Google Scholar 

  4. Baqi, Y. and Mueller, C.E., J. Org. Chem., 2007, vol. 72, no. 15, p. 5908. https://doi.org/10.1021/jo070731i

    Article  CAS  PubMed  Google Scholar 

  5. Boschelli, D.H., Connor, D.T., Bornemeier, D.A., Dyer, R.D., Kennedy, J.A., Kuipers, P.J., Okon­kwo, G.C., Schrier, D.J., and Wright, C.D., J. Med. Chem., 1993, vol. 13, p. 1802. https://doi.org/10.1021/jm00065a002

    Article  Google Scholar 

  6. Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., and Lemaire, M., Chem. Rev., 2002, vol. 102, no. 5, p. 1359. https://doi.org/10.1021/cr000664r

    Article  CAS  PubMed  Google Scholar 

  7. Dooleweerdt, K., Fors, B.P., and Buchwald, S.L., Org. Lett., 2010, vol. 12, p. 2350. https://doi.org/10.1021/ol100720x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruiz-Castillo, P. and Buchwald, S.L., Chem. Rev., 2016, vol. 116, p. 12564. https://doi.org/10.1021/acs.chemrev.6b00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haldon, E., Alvarez, E., Nicasio, M.C., and Perez, P.J., Organometallics, 2009, vol. 28, p. 3815. https://doi.org/10.1021/om900119r

    Article  CAS  Google Scholar 

  10. Chiang, G.C. and Olsson, T., Org. Lett., 2004, vol. 6, no. 18, p. 3079. https://doi.org/10.1021/ol048943e

    Article  CAS  PubMed  Google Scholar 

  11. Seddon, R.K., Nat. Mater., 2003, vol. 2, p. 363. https://doi.org/10.1038/nmat907

    Article  CAS  PubMed  Google Scholar 

  12. Filipe, E., Rebelo, L.P.N., Canongia Lopes, J.N., and Esperanca, J.M.S.S., J. Phys. Chem. C, 2005, vol. 109, p. 6040. https://doi.org/10.1021/jp050430h

    Article  CAS  Google Scholar 

  13. Smiglak, M., Reichert, W.M., Holbrey, J.D., Wilkes, J.S., Sun, L., Thrasher, J.S., Kirichenko, K., Singh, S., Katritzky, A.R., and Rogers, R.D., Chem. Commun., 2006, no. 24, p. 2554. https://doi.org/10.1039/b602086k

    Article  CAS  Google Scholar 

  14. Baranyai, K.J., Deacon, G.B., MacFarlane, D.R., Pringle, J.M., and Scott, J.L., Aust. J. Chem., 2004, vol. 57, p. 145. https://doi.org/10.1071/CH03221

    Article  CAS  Google Scholar 

  15. Matsumoto, K., Hagiwara, R., and Ito, Y., Electrochem. Solid-State Lett., 2004, vol. 7, p. 3. https://doi.org/10.1149/1.1795613

    Article  CAS  Google Scholar 

  16. Marsh, K.N., Boxall, J.A., and Lichtenthaler, R., Fluid Phase Equilib., 2004, vol. 219, p. 93. https://doi.org/10.1016/j.fluid.2004.02.003

    Article  CAS  Google Scholar 

  17. Sarrafi, Y., Mohadeszadeh, M.., and Alimohammadi, K., Chin. Chem. Lett., 2009, vol. 20, no. 7, p. 784. https://doi.org/10.1016/j.cclet.2009.02.013

    Article  CAS  Google Scholar 

  18. Dokorou, V., Primikiri, A., and Kovala-Demertzi, D., J. Inorg. Biochem., 2011, vol. 2, p. 195. https://doi.org/10.1016/j.jinorgbio.2010.10.008

    Article  CAS  Google Scholar 

  19. Kovala-Demertzi, D., Dokorou, V., Primikiri, A., Var­gas, R., Silvestru, C., Russo, U., and Demertzis, M.A., J. Inorg. Biochem., 2009, vol. 5, p. 738. https://doi.org/10.1016/j.jinorgbio.2009.01.014

    Article  CAS  Google Scholar 

  20. Huang, H., Deng, K., and Deng, G.J., Green Chem., 2020, vol. 22, p. 8243. https://doi.org/10.1039/D0GC02789H

    Article  CAS  Google Scholar 

  21. López-Mejías, V. and Matzgert, A.J., Cryst. Growth Des., 2015, vol. 15, p. 3955. https://doi.org/10.1021/acs.cgd.5b00570

    Article  CAS  Google Scholar 

  22. Zheng, K., Jing, D., Lu, C., Chen, Z., and Su, Z., Angew. Chem., Int. Ed., 2019, vol. 58, p. 14666. https://doi.org/10.1002/anie.201906112

    Article  CAS  Google Scholar 

  23. Mclachlan, F., Mathews, C.J., Smith, P.J., and Welton, T., Organometallics, 2003, vol. 22, p. 5350. https://doi.org/10.1021/om034075y

    Article  CAS  Google Scholar 

  24. Orha, L., Tukacs, J.M., Gyarmati, B., Szilágyi, A., Kollár, L., and Mika, L.T., ACS Sustainable Chem. Eng., 2018, vol. 6, p. 5097. https://doi.org/10.1021/acssuschemeng.7b04775

    Article  CAS  Google Scholar 

  25. Li, Z., Wen, C.M., Wang, R.Y., Zheng, H.Y., and Xie, K.C., Chem. J. Chin. Univ., 2009, vol. 30, p. 2024. http://www.cjcu.jlu.edu.cn/EN/Y2009/V30/I10/2024

    CAS  Google Scholar 

  26. Li, G., Feng, Z., Nie, R., and Zhu, D., Chin. J. Inorg. Chem., 2021, vol. 37, p. 561. https://doi.org/10.11862/CJIC.2021.054

    Article  CAS  Google Scholar 

  27. Mallesham, B., Rajesh, B.M., Reddy, P.R., Srinivas, D., and Trehan, S., Org. Lett., 2003, vol. 5, p. 963. https://doi.org/10.1021/ol026902h

    Article  CAS  PubMed  Google Scholar 

  28. Kovala-Demertzi, D., Staninska, M., Garcia-Santos, I., Castineiras, A., and Demertzis, M.A., J. Inorg. Biochem., 2011, vol. 105, p. 1187. https://doi.org/10.1016/j.jinorgbio.2011.05.025

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (grant no. U1407122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Xue or Shengui Ju.

Ethics declarations

The authors declare the absence of conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Xue, F., Yu, J. et al. Preparation of N-Aryl Anthranilic Acid Drugs by Modified Ullmann Coupling Reaction in Ionic Liquids. Russ J Org Chem 58, 837–843 (2022). https://doi.org/10.1134/S1070428022060124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022060124

Keywords:

Navigation