Skip to main content
Log in

Synthesis of Quinone Derivatives of Benzannelated Heterocycles with Bridgehead Nitrogen

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A facile synthesis of para-quinones derived from fused benzimidazoles with a bridgehead nitrogen atom was developed. The heterocyclic quinone core formed as a result of reductive cyclization of ortho-nitroarenes containing alicyclic and aromatic azaheterocycles. Functionalization of 1,2,3,4-tetrahydro- and pyrido[1,2-a]benzimidazoles via SEAr, condensation, and reduction reactions allowed synthesis of amino derivatives which were oxidized with KNO3 in H2SO4 to obtain novel heterocyclic quinones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Alvarez, F., Ghérardi, A., Nebois, P., Sarciron, M.-E., étavy, A.-F., and Walchshofer, N., Bioorg. Med. Chem. Lett., 2002, vol. 12, p. 977. https://doi.org/10.1016/S0960-894X(02)00064-1

    Article  CAS  PubMed  Google Scholar 

  2. Ryu, C.-K., Song, E.-H., Shim, J.-Y., You, H.-J., Choi, K.U., Choi, I.H., Lee, E.Y., and Chae, M.J., Bioorg. Med. Chem. Lett., 2003, vol. 13, p. 17. https://doi.org/10.1016/S0960-894X(02)00856-9

    Article  CAS  PubMed  Google Scholar 

  3. Chung, K.-H., Hong, S.-Y., You, H.-J., Park, R.-E., and Ryu, C.-K., Bioorg. Med. Chem., 2006, vol. 14, p. 5795. https://doi.org/10.1016/j.bmc.2006.05.059

    Article  CAS  PubMed  Google Scholar 

  4. Oettmeier, W., Masson, K., and Hecht, H.-J., Biochim. Biophys. Acta, Bioenerg., 2001, vol. 1504, p. 346. https://doi.org/10.1016/S0005-2728(00)00263-2

    Article  CAS  Google Scholar 

  5. Lynch, M., Hehir, S., Kavanagh, P., Leech, D., O’Shaughnessy, J., Carty, M.P., and Aldabbagh, F., Chem. Eur. J., 2007, vol. 13, p. 3218. https://doi.org/10.1002/chem.200601450

    Article  CAS  PubMed  Google Scholar 

  6. Sweeney, M., Keane, L.-A.J., Gurry, M., McArdle, P., and Aldabbagh, F., Org. Lett., 2018, vol. 20, p. 6970. https://doi.org/10.1021/acs.orglett.8b03135

    Article  CAS  PubMed  Google Scholar 

  7. Suh, M.-E., Kang, M.-J., Yoo, H.-W., Park, S.-Y., and Lee, C.-O., Bioorg. Med. Chem., 2000, vol. 8, p. 2079. https://doi.org/10.1016/s0968-0896(00)00132-2

    Article  CAS  PubMed  Google Scholar 

  8. Guise, C.P., Mowday, A.M., Ashoorzadeh, A., Yuan, R., Lin, W.-H., Wu, D.-H., Smaill, J.B., Patterson, A.V., and Ding, K., Chin. J. Cancer., 2014, vol. 33, p. 80. https://doi.org/10.5732/cjc.012.10285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma, A., Arambula, J.F., Koo, S., Kumar, R., Singh, H., Sessler, J.L., and Kim, J.S., Chem. Soc. Rev., 2019, vol. 48, p. 771. https://doi.org/10.1039/C8CS00304A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colucci, M.A., Couch, G.D., and Moody, C.J., Org. Biomol. Chem., 2008, vol. 6, p. 637. https://doi.org/10.1039/B715270A

    Article  CAS  PubMed  Google Scholar 

  11. Parkinson, E.I. and Hergenrother, P.J., Acc. Chem. Res., 2015, vol. 48, p. 2715. https://doi.org/10.1021/acs.accounts.5b00365

    Article  CAS  PubMed  Google Scholar 

  12. Siegel, D., Yan, C., and Ross, D., Biochem. Pharmacol., 2012, vol. 83, p. 1033. https://doi.org/10.1016/j.bcp.2011.12.017

    Article  CAS  PubMed  Google Scholar 

  13. Rhee, H.K., Park, H.J., Lee, S.K., Lee, C.O., and Choo, H.Y., Bioorg. Med. Chem., 2007, vol. 15, p. 1651. https://doi.org/10.1016/j.bmc.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  14. Ryu, C.K., Lee, J.Y., Jeong, S.H., and Nho, J.H., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 146. https://doi.org/10.1016/j.bmcl.2008.10.131

    Article  CAS  PubMed  Google Scholar 

  15. Mulchin, B.J., Newton, C.G., Baty, J.W., Grasso, C.H., Martin, W.J., Walton, M.C., Dangerfield, E.M., Plunkett, C.H., Berridge, M.V., Harper, J.L., Timmer, M.S.M., and Stocker, B.L., Bioorg. Med. Chem., 2010, vol. 18, p. 3238. https://doi.org/10.1016/j.bmc.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  16. Pan, L., Zheng, Q., Chen, Y., Yang, R., Yang, Y., Li, Z., and Meng, X., Eur. J. Med. Chem., 2018, vol. 157, p. 423. https://doi.org/10.1016/j.ejmech.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  17. Joyce, E., Kavanagh, P., Leech, D., Karpinska, J., McArdle, P., and Aldabbagh, F., Tetrahedron Lett., 2012, vol. 53, p. 3788. https://doi.org/10.1016/j.tetlet.2012.05.047

    Article  CAS  Google Scholar 

  18. Batenko, N., Belyakov, S., Kiselovs, G., and Valters, R., Tetrahedron Lett., 2013, vol. 54, p. 4697. https://doi.org/10.1016/j.tetlet.2013.06.094

    Article  CAS  Google Scholar 

  19. Batenko, N., Kricka, A., Belyakov, S., Turovska, B., and Valters, R., Tetrahedron Lett., 2016, vol. 57, p. 292. https://doi.org/10.1016/j.tetlet.2015.12.002

    Article  CAS  Google Scholar 

  20. Diep, T.D., Dao, P.D.Q., and Cho, C.S., Eur. J. Org. Chem., 2019, vol. 2019, p. 4071. https://doi.org/10.1002/ejoc.201900635

    Article  CAS  Google Scholar 

  21. Fagan, V., Bonham, S., McArdle, P., Carty, M.P., and Aldabbagh, F., Eur. J. Org. Chem., 2012, vol. 2012, p. 1967. https://doi.org/10.1002/ejoc.201101687

    Article  CAS  Google Scholar 

  22. Xue, D. and Long, Y., J. Org. Chem., 2014, vol. 79, p. 4727. https://doi.org/10.1021/jo5005179

    Article  CAS  PubMed  Google Scholar 

  23. Gurry, M., Sweeney, M., McArdle, P., and Aldabbagh, F., Org. Lett., 2015, vol. 17, p. 2856. https://doi.org/10.1021/acs.orglett.5b01317

    Article  CAS  PubMed  Google Scholar 

  24. Sweeney, M., Gurry, M., Keane, L.-A.J., and Aldabbagh, F., Tetrahedron Lett., 2017, vol. 58, p. 3565. https://doi.org/10.1016/j.tetlet.2017.07.102

    Article  CAS  Google Scholar 

  25. Sun, X., Ye, L.-M., Lv, X.-H., Hu, Y., Chen, Y.-Y., Zhang, X.-J., and Yan, M., Org. Biomol. Chem., 2015, vol. 13, p. 7381. https://doi.org/10.1039/C5OB00904A

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen, T.B., Ermolenko, L., and Al-Mourabit, A., Green Chem., 2016, vol. 18, p. 2966. https://doi.org/10.1039/C6GC00902F

    Article  CAS  Google Scholar 

  27. Mahmoodi, N.O., Mamaghani, M., Ghanadzadeh, A., Arvand, M., and Fesanghari, M., J. Phys. Org. Chem., 2010, vol. 23, p. 266. https://doi.org/10.1002/poc.1623

    Article  CAS  Google Scholar 

  28. Sokolov, A.A., Shebunina, T.V., Begunov, R.S., Syroeshkin, M.A., Solkan, V.N., Mikhal’chenko, L.V., Leonova, M.Y., and Gultyai, V.P., Russ. Chem. Bull., 2014, vol. 63, p. 372. https://doi.org/10.1007/s11172-014-0440-y

    Article  CAS  Google Scholar 

  29. Sowmiah, S., Esperanca, J.M.S.S., Rebelo, L.P.N., and Afonso, C.A.M., Org. Chem. Front., 2018, vol. 5, p. 453. https://doi.org/10.1039/C7QO00836H

    Article  CAS  Google Scholar 

  30. Begunov, R.S. and Sokolov, A.A., Russ. J. Org. Chem., 2014, vol. 50, p. 1220. https://doi.org/10.1134/S1070428014080296

    Article  CAS  Google Scholar 

  31. Begunov, R.S., Sokolov, A.A., and Sazhina, A.A., Russ. J. Org. Chem., 2015, vol. 51, p. 1196. https://doi.org/10.1134/S1070428015080266

    Article  CAS  Google Scholar 

  32. Suschitzky, H., and Sutton, M.E., Tetrahedron, 1968, vol. 24, p. 4581. https://doi.org/10.1016/S0040-4020(01)96296-9

    Article  CAS  Google Scholar 

  33. Shawcross, A.P. and Stanforth, S.P., J. Heterocycl. Chem., 1990, vol. 27, p. 367. https://doi.org/10.1002/jhet.5570270249

    Article  CAS  Google Scholar 

  34. Hubbard, J.W., Piegols, A.M., and Söderberg, B.C.G., Tetrahedron, 2007, vol. 63, p. 7077. https://doi.org/10.1016/j.tet.2007.05.010

    Article  CAS  Google Scholar 

  35. Joardar, S., Bhattacharyya, A., and Das, S., Synthesis, 2014, vol. 46, p. 3121. https://doi.org/10.1055/s-0034-1378454

    Article  CAS  Google Scholar 

  36. Begunov, R.S., Sokolov, A.A., Belova, V.O., Fakhrutdinov, A.N., Shashkov, A.S., and Fedyanin, I.V., Tetrahedron Lett., 2015, vol. 56, p. 5701. https://doi.org/10.1016/j.tetlet.2015.08.014

    Article  CAS  Google Scholar 

  37. Begunov, R.S., Sokolov, A.A., Belova, V.O., and Solov’ev, M.E., Russ. Chem. Bull., 2016, vol. 65, p. 644. https://doi.org/10.1007/s11172-016-1349-4

    Article  CAS  Google Scholar 

  38. Begunov, R.S., Sokolov, A.A., and Gromova, D.A., Russ. J. Org. Chem., 2018, vol. 54, p. 747. https://doi.org/10.1134/S1070428018050123

    Article  CAS  Google Scholar 

  39. Fagan, V., Bonham, S., Carty, M.P., and Aldabbagh, F., Org. Biomol. Chem., 2010, vol. 8, p. 3149. https://doi.org/10.1039/C003511D

    Article  CAS  PubMed  Google Scholar 

  40. Fagan, V., Bonham, S., Carty, M.P., Saenz-Méndez, P., Eriksson, L.A., and Aldabbagh, F., Bioorg. Med. Chem., 2012, vol. 20, p. 3223. https://doi.org/10.1016/j.bmc.2012.03.063

    Article  CAS  PubMed  Google Scholar 

  41. Begunov, R.S., Sokolov, A.A., and Shebunina, T.V., Russ. J. Org. Chem., 2013, vol. 49, p. 773. https://doi.org/10.1134/S1070428013050291

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Foundation for Basic Research (project no. 18-33-00003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Begunov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begunov, R.S., Sokolov, A.A. & Filimonov, S.I. Synthesis of Quinone Derivatives of Benzannelated Heterocycles with Bridgehead Nitrogen. Russ J Org Chem 56, 1383–1391 (2020). https://doi.org/10.1134/S1070428020080084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020080084

Keywords:

Navigation