Skip to main content
Log in

Allylation of (R)-2,3-O-Cyclohexylideneglyceraldehyde with Methyl 3-(Bromomethyl)but-3-enoate. Methyl 3-{(2S)-2-[(2R)-1,4-Dioxaspiro[4.5]dec-2-yl]-2-hydroxyethyl}but-3-enoate as a Convenient Universal Building Block for the Synthesis of Key Fragments of Bioactive Compounds

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

(R)-2,3-O-Cyclohexylideneglyceraldehyde was involved in the Barbier allylation reaction with such 2-substituted functionalized allyl bromide as methyl 3-(bromomethyl)but-3-enoate under the action of various metals or metal salts. The best diastereoselectivity was observed with Zn and DMF or THF plus saturated aqueous ammonium chloride as solvents. The feasibility of the resulting homoallyl alcohol, specifically methyl 3-{(2S)-2-[(2R)-1,4-dioxaspiro[4.5]dec-2-yl]-2-hydroxyethyl}but-3-enoate, as a building block for the macrocyclic anticancer agents, such as laulimalides and their synthetic analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courtois, G. and Miginiac, L., J. Organomet. Chem., 1974, vol. 69, p. 1. doi https://doi.org/10.1016/S0022-328X(00)92983-8

    Article  CAS  Google Scholar 

  2. Li, S., Wang, J.-X., Wen, X., and Ma, X., Tetrahedron, 2011, vol. 67, p. 849. doi https://doi.org/10.1016/j.tet.2010.12.035

    Article  CAS  Google Scholar 

  3. Yanagisawa, A., Habaue, S., Yasue, K., and Yamamoto, H., J. Am. Chem. Soc., 1994, vol. 116, p. 6130. doi https://doi.org/10.1021/ja00093a010

    Article  CAS  Google Scholar 

  4. Araki, S., Jin, S.J., Idou, Y., and Butsugan, Y., Bull. Chem. Soc. Jpn., 1992, vol. 65, p. 1736. doi https://doi.org/10.1246/bcsj.65.1736

    Article  CAS  Google Scholar 

  5. Wang, Z., Yuan, S., and Li, C.-J., Tetrahedron Lett., 2002, vol. 43, p. 5097. doi https://doi.org/10.1016/S0040-4039(02)00995-4

    Article  CAS  Google Scholar 

  6. Araki, S., Ito, H., and Butsugan, Y., J. Org. Chem., 1988, vol. 53, p. 1831. doi https://doi.org/10.1021/jo00243a052

    Article  CAS  Google Scholar 

  7. Hashimoto, Y., Kagoshima, H., and Saigo, K., Tetrahedron Lett., 1994, vol. 35, p. 4805. doi https://doi.org/10.1016/S0040-4039(00)76973-5

    Article  CAS  Google Scholar 

  8. Nokami, J., Otera, J., Sudo, T., and Okawara, R., Organometall., 1983, vol. 2, p. 191. doi https://doi.org/10.1021/om00073a047

    Article  CAS  Google Scholar 

  9. Sinha, A.K., Sil, A., Sasmal, A.K., Pradhan, M., and Pal, T., New J. Chem., 2015, vol. 39, p. 1685. doi https://doi.org/10.1039/C4NJ01913J

    Article  CAS  Google Scholar 

  10. Tanaka, H., Yamashita, S., Hamatani, T., Ikemoto, Y., and Torii, S., Chem. Lett., 1986, p. 1611. doi https://doi.org/10.1246/cl.1986.1611

    Article  Google Scholar 

  11. Butsugan, Y., Ito, H., and Araki, S., Tetrahedron Lett., 1987, vol. 28, p. 3707. doi https://doi.org/10.1016/S0040-4039(00)96362-7

    Article  CAS  Google Scholar 

  12. Wada, M. and Akiba, K., Tetrahedron Lett., 1985, vol. 26, p. 4211. doi https://doi.org/10.1016/S0040-4039(00)98994-9

    Article  CAS  Google Scholar 

  13. Luche, J.L. and Damiano, J.C., J. Am. Chem. Soc., 1980, vol. 102, p. 7926. doi https://doi.org/10.1021/ja00547a016

    Article  CAS  Google Scholar 

  14. Perier, C. and Luche, J.L., J. Org. Chem., 1985, vol. 50, p. 910. doi https://doi.org/10.1021/jo00206a047

    Article  Google Scholar 

  15. Peter, C., Einhorn, J., and Luche, J.L., Tetrahedron Lett., 1985, vol. 26, p. 1449. doi https://doi.org/10.1016/S0040-4039(00)99068-3

    Article  Google Scholar 

  16. Sain, B., Prajapati, D., and Sandhu, J.S., Tetrahedron Lett., 1992, vol. 33, p. 4795. doi https://doi.org/10.1016/S0040-4039(00)61288-1

    Article  CAS  Google Scholar 

  17. Jana, S., Guin, C., and Roy, S.C., Tetrahedron Lett., 2004, vol. 45, p. 6575. doi https://doi.org/10.1016/j.tetlet.2004.07.045

    Article  CAS  Google Scholar 

  18. Kuroboshi, M., Goto, K., Mochizuki, M., and Tanaka, H., Synlett., 1999, p. 1930. doi https://doi.org/10.1055/s-1999-2995

    Article  Google Scholar 

  19. Hiyama, T., Sawahata, M., and Kasuno, Y., Chem. Lett., 1985, p. 611. doi https://doi.org/10.1246/cl.1985.611

    Article  Google Scholar 

  20. Chan, T.C., Lau, C.P., and Chan, T.H., Tetrahedron Lett., 2004, vol. 45, p. 4189. doi https://doi.org/10.1016/j.tetlet.2004.03.163

    Article  CAS  Google Scholar 

  21. Imamoto, T., Kusumoto, T., Tawarayama, Y., Sugiura, Y., and Mita, T., J. Org. Chem., 1984, vol. 49, p. 3904. doi https://doi.org/10.1021/jo00195a006

    Article  CAS  Google Scholar 

  22. Wu, S., Li, Y., and Zhang, S., J. Org. Chem., 2016, vol. 81, p. 8070. doi https://doi.org/10.1021/acs.joc.6b01466

    Article  CAS  PubMed  Google Scholar 

  23. Souppe, J., Danon, L., Namy, J.L., and Kagan, H.B., J. Organometall. Chem., 1983, vol. 250, p. 227. doi https://doi.org/10.1016/0022-328X(83)85053-0

    Article  CAS  Google Scholar 

  24. Yamamoto, Y. and Asao, N., Chem. Rev., 1993, vol. 93, p. 2207. doi https://doi.org/10.1021/cr00022a010

    Article  CAS  Google Scholar 

  25. Yus, M., Gonzalez-Gomez, J.C., and Foubelo, F., Chem. Rev., 2011, vol. 111, p. 7774. doi https://doi.org/10.1021/cr1004474

    Article  CAS  PubMed  Google Scholar 

  26. Li, C.-J., Tetrahedron, 1996, vol. 52, p. 5643. doi https://doi.org/10.1016/0040-4020(95)01056-4

    Article  CAS  Google Scholar 

  27. Kim, S.H., Lee, H.S., Kim, K.H., Kim, S.H., and Kim, J.N., Tetrahedron, 2010, vol. 66, p. 7065. doi https://doi.org/10.1016/j.tet.2010.05.103

    Article  CAS  Google Scholar 

  28. Lin, M.-H., Kuo, C.-K., Lin, W.-C., Huang, Y.-C., Tsai, Y.-T., Liang, K.-Y., Li, Y.-S., and Chuang, T.-H., Tetrahedron, 2013, vol. 69, p. 8263. doi https://doi.org/10.1016/j.tet.2013.07.012

    Article  CAS  Google Scholar 

  29. Salaskar, A.A., Mayekar, N.V., Sharma, A., Nayak, S.K., Chattopadhyaya, A., and Chattopadhyay, S., Synthesis, 2005, p. 2777. doi https://doi.org/10.1055/s-2005-916009

    Article  CAS  Google Scholar 

  30. Venkataiah, M., Somaiah, P., Reddipalli, G., and Fadnavis, N.W., Tetrahedron: Asymmetry, 2009, vol. 20, p. 2230. doi https://doi.org/10.1016/j.tetasy.2009.08.005

    Article  CAS  Google Scholar 

  31. Jangili, P., Kashanna, J., Kumar, C.G., and Das, B., Bioorg. Med. Chem. Lett., 2014, vol. 24, p. 325. doi https://doi.org/10.1016/j.bmcl.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  32. Geng, H.M., Stubbing, L.A., Li-Yang Chen, J., Furkert, D.P., and Brimble, M.A., Eur. J. Org. Chem., 2014, p. 6227. doi https://doi.org/10.1002/ejoc.201403000

    Article  CAS  Google Scholar 

  33. Chattopadhyay, A. and Mamdapur, V.R., J. Org. Chem., 1995, vol. 60, p. 585. doi https://doi.org/10.1021/jo00108a020

    Article  CAS  Google Scholar 

  34. Roy, S., Sharma, A., Dhotare, B., Vichare, P., Chattopadhyay, A., and Chattopadhyay, S., Synthesis, 2007, p. 1082. doi https://doi.org/10.1055/s-2007-965956

    Article  CAS  Google Scholar 

  35. Vilanova, C., Sanchez-Peris, M., Roldan, S., Dhotare, B., Carda, M., and Chattopadhyay, A., Tetrahedron Lett., 2013, vol. 54, p. 6562. doi https://doi.org/10.1016/j.tetlet.2013.09.096

    Article  CAS  Google Scholar 

  36. Chatterjee, S., Kanojia, S.V., Chattopadhyay, S., and Sharma, A., Tetrahedron: Asymmetry, 2011, vol. 22, p. 367. doi https://doi.org/10.1016/j.tetasy.2011.02.008

    Article  CAS  Google Scholar 

  37. Chattopadhyay, A., Goswami, D., and Dhotare, B., Tetrahedron Lett., 2010, vol. 51, p. 3893. doi https://doi.org/10.1016/j.tetlet.2010.05.070

    Article  CAS  Google Scholar 

  38. Sharma, A., Gamre, S., Roy, S., Goswami, D., Chattopadhyay, A., and Chattopadhyay, S., Tetrahedron Lett., 2008, vol. 49, p. 3902. doi https://doi.org/10.1016/j.tetlet.2008.04.058

    Article  CAS  Google Scholar 

  39. Chattopadhyay, S. K., Biswas, T., and Biswas, T., Tetrahedron Lett., 2008, vol. 49, p. 1365. doi https://doi.org/10.1016/j.tetlet.2007.12.097

    Article  CAS  Google Scholar 

  40. Goswami, D., Chattopadhyay, A., and Chattopadhyay, S., Tetrahedron: Asymmetry, 2009, vol. 20, p. 1957. doi https://doi.org/10.1016/j.tetasy.2009.08.013

    Article  CAS  Google Scholar 

  41. Orsini, F. and Leccioli, C., Tetrahedron: Asymmetry, 1997, vol. 8, p. 4011. doi https://doi.org/10.1016/S0957-4166(97)00521-1

    Article  CAS  Google Scholar 

  42. Chattopadhyay, A., Dhotare, B., and Hassarajani, S., J. Org. Chem., 1999, vol. 64, p. 6874. doi https://doi.org/10.1021/jo982130k

    Article  CAS  PubMed  Google Scholar 

  43. Chattopadhyay, A., Goswami, D., and Dhotare, B., Tetrahedron Lett., 2006, vol. 47, p. 4701. doi https://doi.org/10.1016/j.tetlet.2006.04.120

    Article  CAS  Google Scholar 

  44. Mineeva, I.V. and Kulinkovich, O.G., Russ. J. Org. Chem., 2008, vol. 44, p. 1261. doi https://doi.org/10.1134/S1070428008090029

    Article  CAS  Google Scholar 

  45. Mineeva, I.V. and Kulinkovich, O.G., Russ. J. Org. Chem., 2009, vol. 45, p. 1623. doi https://doi.org/10.1134/S1070428009110086

    Article  CAS  Google Scholar 

  46. Mineyeva, I.V. and Kulinkovich, O.G., Tetrahedron Lett., 2010, vol. 51, p. 1836. doi https://doi.org/10.1016/j.tetlet.2010.01.120

    Article  CAS  Google Scholar 

  47. Uneyama, K., Kamaki, N., Moriya, A., and Torii, S., J. Org. Chem., 1985, vol. 50, p. 5396. doi https://doi.org/10.1021/jo00225a084

    Article  CAS  Google Scholar 

  48. Uneyama, K., Nambu, H., and Torii, S., Tetrahedron Lett., 1986, vol. 27, p. 2395. doi https://doi.org/10.1016/S0040-4039(00)84538-4

    Article  CAS  Google Scholar 

  49. Wada, M., Ohlki, H., and Akiba, K., Chem. Commun., 1987, p. 708. doi https://doi.org/10.1039/C39870000708

    Article  CAS  Google Scholar 

  50. Jadhav, B.D. and Pardeshi, S.K., Tetrahedron Lett., 2014, vol. 35, p. 4948. doi https://doi.org/10.1016/j.tetlet.2014.07.031

    Article  CAS  Google Scholar 

  51. Chintamani, S., Amalendu, N., Bhagabat, N., Das, N.B., Sharma, R.P., Tetrahedron Lett., 1995, vol. 36, p. 7119. doi https://doi.org/10.1016/0040-4039(95)01413-C

    Article  Google Scholar 

  52. Vichare, P. and Chattopadhyay, A., Tetrahedron: Asymmetry, 2008, vol. 19, p. 598. doi https://doi.org/10.1016/j.tetasy.2008.01.034

    Article  CAS  Google Scholar 

  53. Wada, M., Ohki, H., and Akiba, K., Tetrahedron Lett., 1986, vol. 27, p. 4771. doi https://doi.org/10.1016/S0040-4039(00)85061-3

    Article  CAS  Google Scholar 

  54. Marton, D., Stivanello, D., and Tagliavini, G., J. Org. Chem., 1996, vol. 61, p. 2731. doi https://doi.org/10.1021/jo951562h

    Article  CAS  PubMed  Google Scholar 

  55. Shono, T., Ishifune, M., and Kashimura, S., Chem. Lett., 1990, p. 449. doi https://doi.org/10.1246/cl.1990.449

    Article  Google Scholar 

  56. Zhou, W., Yan, W., Wang, J.-X., and Wang, K., Synlett., 2008, p. 137. doi https://doi.org/10.1055/s-2007-1000840

    Article  CAS  Google Scholar 

  57. Tan, X.-H., Hou, Y.-Q., Huang, C., Liu, L., and Guo, Q.-X., Tetrahedron, 2004, vol. 60, p. 6129. doi https://doi.org/10.1016/j.tet.2004.05.046

    Article  CAS  Google Scholar 

  58. Pan, C.-F., Zhang, Z.-H., Sun, J., and Wang, Z.-Y., Org. Lett., 2004, vol. 6, p. 3059. doi https://doi.org/10.1021/ol049008u

    Article  CAS  PubMed  Google Scholar 

  59. Imai, T. and Nishida, S., Synthesis, 1993, p. 395. doi https://doi.org/10.1055/s-1993-25871

    Article  Google Scholar 

  60. Kundu, A., Prabhakar, S., Vairamani, M., and Roy, S., Organometall., 1997, vol. 16, p. 4796. doi https://doi.org/10.1021/om9704096

    Article  CAS  Google Scholar 

  61. Mondal, K. and Pan, S.C., Eur. J. Org. Chem., 2017, p. 534. doi https://doi.org/10.1002/ejoc.201601305

    Article  CAS  Google Scholar 

  62. Kalita, P.K. and Phukan, P., Compt. Rendus Chim., 2013, vol. 16, p. 1055. doi https://doi.org/10.1016/j.crci.2013.02.012

    Article  CAS  Google Scholar 

  63. Tan, X.-H., Shen, B., Liu, L., and Guo, Q.-X., Tetrahedron Lett., 2002, vol. 43, p. 9373. doi https://doi.org/10.1016/S0040-4039(02)02370-5

    Article  CAS  Google Scholar 

  64. Zhou, Y., Zha, Z., Zhang, Y., and Wang, Z., Arkivoc, 2008, p. 142. doi https://doi.org/10.3998/ark.5550190.0009.b14

  65. Wang, W.-B., Shi, L.-L., and Huang, Y.-Z., Tetrahedron, 1990, vol. 46, p. 3315. doi https://doi.org/10.1016/S0040-4020(01)85467-3

    Article  CAS  Google Scholar 

  66. Ren, P.-D., Pan, S.-F., Dong, T.-W., and Wu, S.-H., Chin. J. Chem., 1996, vol. 14, p. 462. doi https://doi.org/10.1002/cjoc.19960140512

    CAS  Google Scholar 

  67. Brunton, G., Ingold, K.U., Roberts, B.P., Beckwith, A.L.J., and Krusic, P.J., J Am Chem Soc., 1977, vol. 99, p. 3179. doi https://doi.org/10.1021/ja00451a061

    Article  Google Scholar 

  68. Preite, M.D. and Perez-Carvajal, A., Synlett., 2006, p. 3337. doi https://doi.org/10.1055/s-2006-951529

    Article  CAS  Google Scholar 

  69. Samanta, S., Mohapatra, H., Jana, R., and Ray, J.K., Tetrahedron Lett., 2008, vol. 49, p. 7153. doi https://doi.org/10.1016/j.tetlet.2008.09.162

    Article  CAS  Google Scholar 

  70. Mülzer, J. and Öhler, E., Chem. Rev., 2003, vol. 80, p. 3753. doi https://doi.org/10.1021/cr940368c

    Article  CAS  Google Scholar 

  71. Dolhem, F., Smiljanic, N., Lièvre, C., and Demailly, G., Tetrahedron, 2006, vol. 62, p. 7756. doi https://doi.org/10.1016/j.tet.2006.05.057

    Article  CAS  Google Scholar 

  72. Corey, E.J., Marfat, A., Munroe, J., Kim, K.S., Hopkins, P.B., and Brion, F., Tetrahedron Lett., 1981, vol. 22, p. 1077. doi https://doi.org/10.1016/S0040-4039(01)90241-2

    Article  CAS  Google Scholar 

  73. Narayan, R.S., Sivakumar, M., Bouhlel, E., and Borhan, B., Org. Lett., 2001, vol. 3, p. 2489. doi https://doi.org/10.1021/ol016118h

    Article  CAS  PubMed  Google Scholar 

  74. Patel, P., Gore, V., Powell, W.S., and Rokach, J., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 1987. doi https://doi.org/10.1016/j.bmcl.2011.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Takamura, H., Wada, H., Ogino, M., Kikuchi, T., Kadota, I., and Uemura, D., J. Org. Chem., 2015, vol. 80, p. 3111. doi https://doi.org/10.1021/acs.joc.5b00027

    Article  CAS  PubMed  Google Scholar 

  76. Tripathy, S. and Chattopadhyay, A., Tetrahedron: Asymmetry, 2012, vol. 23, p. 1423. doi https://doi.org/10.1016/j.tetasy.2012.09.007

    Article  CAS  Google Scholar 

  77. Yadav, J.S., Mallikarjuna Reddy, N., Ataur Rahman, Md., Prasad, A.R., and Subba Reddy, B.V., Tetrahedron, 2013, vol. 69, p. 8618. doi https://doi.org/10.1016/j.tet.2013.07.072

    Article  CAS  Google Scholar 

  78. Mülzer, J. and Hanbauer, M., Tetrahedron Lett., 2000, vol. 41, p. 33. doi https://doi.org/10.1016/S0040-4039(99)02021-3

    Article  Google Scholar 

  79. Messenger, B.T. and Davidson, B.S., Tetrahedron Lett., 2001, vol. 42, p. 801. doi https://doi.org/10.1016/S0040-4039(00)02115-8

    Article  CAS  Google Scholar 

  80. Gallagher, B.M. Jr., Zhao, H., Pesant, M., and Fang, F.G., Tetrahedron Lett., 2005, vol. 46, p. 923. doi https://doi.org/10.1016/j.tetlet.2004.12.056

    Article  CAS  Google Scholar 

  81. Mineeva, I.V., Russ. J. Org. Chem., 2018, vol. 54, p. 1341. doi https://doi.org/10.1134/S1070428018090130

    Article  CAS  Google Scholar 

  82. Gallagher, B.M. Jr., Fang, F.G., Johannes, C.W., Pesant, M., Tremblay, M.R., Zhao, H., Akasaka, K., Li, X.Y., Liu, J., and Littlefield, B.A., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 575. doi https://doi.org/10.1016/j.bmcl.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  83. Williams, D.R., Liang, M., Mullins, R.J., and Stites, R.E., Tetrahedron Lett., 2002, vol. 43, p. 4841. doi https://doi.org/10.1016/S0040-4039(02)00907-3

    Article  CAS  Google Scholar 

  84. Nelson, S.G., Cheung, W.S., Kassick, A.J., and Hilfiker, M.A., J. Am. Chem. Soc., 2002, vol. 125, p. 13654. doi https://doi.org/10.1021/ja028019k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mineeva.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 8, pp. 1203–1214.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineeva, I.V. Allylation of (R)-2,3-O-Cyclohexylideneglyceraldehyde with Methyl 3-(Bromomethyl)but-3-enoate. Methyl 3-{(2S)-2-[(2R)-1,4-Dioxaspiro[4.5]dec-2-yl]-2-hydroxyethyl}but-3-enoate as a Convenient Universal Building Block for the Synthesis of Key Fragments of Bioactive Compounds. Russ J Org Chem 55, 1112–1123 (2019). https://doi.org/10.1134/S1070428019080098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019080098

Keywords

Navigation