Skip to main content
Log in

Optimization of Conditions for the Synthesis of 4,4-Dimethyl-1,3-dioxane from tert-Butanol in the Presence of Carbon-Сontaining Porous Materials

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The dioxane method for the isoprene production is a chemically two-stage process based on the splitting of 4,4-dimethyl-1,3-dioxane. The latter is synthesized by condensation of iso-C4H8 or tert-C4H9OH with CH2O (Prins reaction). One of the disadvantages of the considered method of isoprene synthesis is the formation of up to 30–40 wt % by-products (dihydropyrans, diols, unsaturated alcohols, etc.) at the stage of 4,4-dimethyl-1,3-dioxane synthesis. The insufficiently high selectivity of the 4,4-dimethyl-1,3-dioxane formation is due to the multichannel Prins reaction; therefore, a noticeable increase in the selectivity of the process cannot be achieved only by optimizing the currently implemented technological schemes of the dioxane method for the isoprene production. The parameters of the reaction of tert4H9OH with CH2O in the presence of carbon-containing porous materials were selected using the linear optimization method. It was found that the condensation of tert-C4H9OH with CH2O under catalysis conditions with both carbon nanotubes and porous glassy carbon can yield 4,4-dimethyl-1,3-dioxane with a selectivity of up to ~99 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Plate, N.A. and Slivinskii, E.V., Osnovy khimii i tekhnologii monomerov (Fundamentals of Chemistry and Technology of Monomers), Moscow: Nauka, 2002.

    Google Scholar 

  2. Miranda, P.O., Carballo, R.M., Ramirez, M.A., Martín, V.S., Padron, J.I., Arkvoc., 2007, no. 8, pp. 331–343. https://doi.org/10.3998/ark.5550190.0008.430

    Article  Google Scholar 

  3. RF Patent 2255936 (Publ. 2005).

  4. RF Patent 2330848 (Publ. 2008).

  5. Wang, J., Jaenicke, S., Chuah, G.K., Hua, W., Yue, Y., and Gao, Z., Catal. Commun., 2011, vol. 12, no. 12, pp. 1131–1135. https://doi.org/10.1016/j.catcom.2011.03.034

    Article  CAS  Google Scholar 

  6. Do, M.D., Jaenicke, S., and Chuah, G.K., Catal. Sci. Technol., 2012, vol. 2, pp. 1417–1424. https://doi.org/10.1039/C2CY20084H

    Article  CAS  Google Scholar 

  7. Vasiliadou, E.S., Li, S., Caratzoulas, S., and Lobo, R.F., Catal. Sci. Technol., 2018, vol. 8, pp. 5794–5806. https://doi.org/10.1039/C8CY01667D

    Article  CAS  Google Scholar 

  8. Vasiliadou, E.S., Gould, N.S., and Lobo, R.F., Chem. Cat. Chem., 2017, vol. 9, no. 3, pp. 4417–4425. https://doi.org/10.1002/cctc.201701315

    Article  CAS  Google Scholar 

  9. Ogorodnikov, S.K., Formal’degid (Formaldehyde), Leningrad: Khimiya, 1984.

    Google Scholar 

  10. Kraikin, V.A., Musina, Z.N., Galkin, E.G., Kuznetsov, S.I., Egorov, A.E., and Salazkin S.N., Polym. Sci. Ser. A, 2006, vol. 48, no. 12, pp. 1287–1303. https://doi.org/10.1134/S0965545X06120108

    Article  Google Scholar 

  11. Fadeeva, V.I., Shekhovtsova, T.N., and Ivanov, V.M., Osnovy analiticheskoi khimii. Prakticheskoe rukovodstvo (Fundamentals of Analytical Chemistry. Practical Guide), Moscow: Vysshaya shkola, 2001.

    Google Scholar 

  12. Aivazov, B.V., Osnovy gazovoi khromatografii (Fundamentals of Gas Chromatography), Moscow: Vysshaya shkola, 1977.

    Google Scholar 

  13. Wu, G., Wu, Y., Rao, G., and Liu, Y., Vysokomolekulyar. Soedin., Ser., B, 1997, vol. 39, no. 7, pp. 1237–1240.

    CAS  Google Scholar 

  14. Ovchinnikov, G.A., Gorskikh, V.A., Fassalova, I.I., Tukhvatshin, V.S., and Talipov, R.F., Izv. vuzov. Khimiya i khim. Tekhnologiya, 2018, vol. 61, no. 12, pp. 81–86. https://doi.org/10.6060/ivkkt.20186112.5542

    Article  CAS  Google Scholar 

  15. Dykman, A.S., Leont’ev, P.Yu., and de Vekke, A.V., Izv. SPbGTI (TU), 2018, vol. 50, no. 24, pp. 39–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.F. Talipov: setting the objectives of the study and the plan of experimental work; V.S. Tukhvatshin: synthesis of 4,4-dimethyl-1,3-dioxane in the presence of carbon nanotubes; G.R. Talipova: synthesis of 4,4-dimethyl-1,3-dioxane in the presence of porous glassy carbon.

Corresponding author

Correspondence to V. S. Tukhvatshin.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 7, pp. 860–864, July, 2022 https://doi.org/10.31857/S0044461822070040

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tukhvatshin, V.S., Talipov, R.F. & Talipova, G.R. Optimization of Conditions for the Synthesis of 4,4-Dimethyl-1,3-dioxane from tert-Butanol in the Presence of Carbon-Сontaining Porous Materials. Russ J Appl Chem 95, 943–947 (2022). https://doi.org/10.1134/S1070427222070047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222070047

Keywords:

Navigation