Skip to main content
Log in

Pyrolysis of Polyurethanes. Process Features and Composition of Reaction Products

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

An increase in the production and consumption of polyurethane products used in heavy and light industry, in the construction industry, automotive, medicine, furniture industry, in the manufacture of sports equipment, brings about the need for their processing and disposal. Incineration of polyurethane waste leads to the release of toxic gases (NOx, HCl, various freons, and fluorine-containing hydrocarbons) and the formation of polycyclic aromatic and heterocyclic compounds, polychlorinated dibenzodioxins and dibenzofurans, and other corrosive-aggressive chlorine-containing compounds. Thermal processing of polyurethanes in an inert atmosphere, i.e., pyrolysis, in contrast to the polymer decomposition in an oxidizing medium, results in the formation of a larger amount of oxygen-containing compounds, which raises the problem of studying the optimal conditions for the polyurethane waste pyrolysis. The formation of halogen- and phosphorus-containing organic compounds, due to the presence of chlorine, fluorine, phosphorus in flame retardant additives that improve the thermostable properties of polyurethanes, significantly reduces the quality of the resulting pyrolysis products, which affects their further use. The review describes the principles and mechanisms of polyurethane degradation. The influence of the polymer structure, the process temperature, the nature of the carrier gas, and the presence of a catalyst on the thermal polyurethane degradation and the formation of products in the gas and condensed phases is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Scheme 6
Scheme 7.
Scheme 8.
Scheme 9.
Scheme 10
Scheme 11.
Scheme 12.
Fig. 1.
Scheme 13.
Scheme 14.
Scheme 15.
Scheme 16.
Scheme 17.
Scheme 18.
Scheme 19
Scheme 20.
Scheme 21.
Scheme 22.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 23
Scheme 24.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Samaila, S., Mohd, Y.N.Z., Kamarudin, A., and Nazri, A., Construct. Build. Mater., 2019, vol. 202, pp. 738–752. https://doi.org/10.1016/j.conbuildmat.2019.01.048

    Article  CAS  Google Scholar 

  2. Nikje, M.M.A., Garmarudi, A.B., and Idris, A.B., Des. Monomers Polym., 2011, vol. 14, pp. 395–421. https://doi.org/10.1163/138577211X587618

    Article  CAS  Google Scholar 

  3. Kausar, A., Polym. Plast. Technol. Eng., 2017, vol. 57, no. 4, pp. 346–369. https://doi.org/10.1080/03602559.2017.1329433

    Article  CAS  Google Scholar 

  4. Szycher, M., Basic Concepts in Polyurethane Chemistry and Technology. Szycher’s Handbook of polyurethanes, 2012. 2nd Ed, p. 1144. https://doi.org/10.1201/b12343

    Article  Google Scholar 

  5. Roohpour, N., Wasikiewicz,, J., Moshaverinia, A., Deepen, P., Ihtesham, R., and Pankaj, V., Materials, 2009, vol. 2, no. 3, pp. 719–733. https://doi.org/10.3390/ma2030719

    Article  CAS  PubMed Central  Google Scholar 

  6. Komurlu, E. and Kesimal, A., J. Rock. Mech. Geotech. Eng., 2015, pp. 1–7. https://doi.org/10.1016/j.jrmge.2015.05.004

    Article  Google Scholar 

  7. Gadhave, R.V., Srivastava, S., Mahanwar, P.A., and Gadekar, P.T., Open J. Polym. Chem., 2019, vol. 9, pp. 39–51. https://doi.org/10.4236/ojpchem.2019.92004

    Article  CAS  Google Scholar 

  8. Zakharyan, E.M., Petrukhina, N.N., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, no. 9, pp. 1271–1313. https://doi.org/10.1134/S1070427220090013

    Article  CAS  Google Scholar 

  9. Zakharyan, E.M., Petrukhina, N.N., Dzhabarov, E.G., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, no. 10, pp. 1445–1490. https://doi.org/10.1134/S1070427220100018 

    Article  CAS  Google Scholar 

  10. Zakharyan, E.M. and Maksimov, A.L., Russ. J. Appl. Chem., 2021, vol. 94, no. 10, pp. 1351–1388. https://doi.org/10.1134/S1070427221100013 

    Article  CAS  Google Scholar 

  11. Zia, Kh.M., Bhatti, H.Bh., and Bhatti, I.A., React. Funct. Polym., 2007, vol. 67, no. 8, pp. 675–692. https://doi.org/10.1016/j.reactfunctpolym.2007.05.004

    Article  CAS  Google Scholar 

  12. Ignatyev, I.A., Thielemans, D.W., and Beke, B.V., ChemSusChem., 2014, vol. 7, pp. 1579–1593. https://doi.org/10.1002/cssc.201300898

    Article  CAS  PubMed  Google Scholar 

  13. Joma, G., Goblet, P., Coquelet, Ch., and Morlot, V., Thermochim. Acta, 2015, vol. 612, pp. 10–18. https://doi.org/10.1016/j.tca.2015.05.009

    Article  CAS  Google Scholar 

  14. Saunders, J.H. and Backus, J.K., Rubber Chem. Technol., 1966, vol. 39, no. 2, pp. 461–480. https://doi.org/10.5254/1.3544856

    Article  CAS  Google Scholar 

  15. Zhang, Y., Xia, Zh., Huang, H., and Chen, H., Polym. Test, 2009, vol. 28, no. 3, pp. 264–269. https://doi.org/10.1016/j.polymertesting.2008.12.011

    Article  CAS  Google Scholar 

  16. Zhang, Y., Xia, Zh., Huang, H., and Chen, H., J. Anal. Appl. Pyrol., 2009, vol. 84, no. 1, pp. 89–94. https://doi.org/10.1016/j.jaap.2008.11.008

    Article  CAS  Google Scholar 

  17. Ketata, N., Sanglar, C., Waton, H., Alamercery, S., Delolme, F., Raffin, G., and Grenier-Loustalot, M.F., Polym. Polym. Comp., 2005, vol. 13, no. 1, pp. 1–26. https://doi.org/10.1177/096739110501300101

    Article  CAS  Google Scholar 

  18. Sui, H., Ju, X., Liu, X., Cheng, K., Luo, Y., and Zhong, F., Polym. Degrad. Stab., 2014, vol. 101, pp. 109–113. https://doi.org/10.1016/j.polymdegradstab.2013.11.021

    Article  CAS  Google Scholar 

  19. Allan, D., Daly, J., and Liggat, J.J., Polym. Degrad. Stab., 2013, vol. 98, no. 2, pp. 535–541. https://doi.org/10.1016/j.polymdegradstab.2012.12.002

    Article  CAS  Google Scholar 

  20. Czech, Z. and Pełech, R., Progr. Org. Coat., 2010, vol. 67, no. 1, pp. 72–75. https://doi.org/10.1016/j.porgcoat.2009.09.019

    Article  CAS  Google Scholar 

  21. Rigo, J.-M., Riveros-Ravelo, O., and Dieu, H., J. Anal. Appl. Pyrol., 1985, vol. 8, pp. 123–134. https://doi.org/10.1016/0165-2370(85)80020-6

    Article  CAS  Google Scholar 

  22. Ohtani, H., Kimura, T., Okamoto, K., Tsuge, Sh., Nagataki, Y., and Miyata, K., J. Anal. Appl. Pyrol., 1987, vol. 12, no. 2, pp. 115–133. https://doi.org/10.1016/0165-2370(87)85061-1

    Article  CAS  Google Scholar 

  23. Marshall, G.L., Eur. Polym.J., 1983, vol. 19, no. 5, pp. 439–444. https://doi.org/10.1016/0014-3057(83)90120-9

    Article  CAS  Google Scholar 

  24. Esperanza, M.M., García, A.N., Font, R., and Conesa, J.A., J. Anal. Appl. Pyrol., 1999, vol. 52, no. 2, pp. 151–166. https://doi.org/10.1016/S0165-2370(99)00048-0

    Article  CAS  Google Scholar 

  25. La Nasa, J., Biale, G., Ferriani, B., Colombini, M.P., and Modugno, F., J. Anal. Appl. Pyrol., 2018, vol. 134, pp. 562–572. https://doi.org/10.1016/j.jaap.2018.08.004

    Article  CAS  Google Scholar 

  26. Lattuati-Derieux, A., Thao-Heu, S., and Lavédrine, B., J. Chromatogr. A, 2011, vol. 1218, no. 28, pp. 4498–4508. https://doi.org/10.1016/j.chroma.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  27. Allan, D., Daly, J.H., and Liggat, J.J., Polym. Degrad. Stab., 2014, vol. 102, pp. 170–179. https://doi.org/10.1016/j.polymdegradstab.2014.01.016

    Article  CAS  Google Scholar 

  28. Pau, D.S.W., Fleischmann, C.M., and Delichatsios, M.A., Fire Saf., J., 2020, vol. 111, ID 102925. https://doi.org/10.1016/j.firesaf.2019.102925

    Article  CAS  Google Scholar 

  29. Garrido, M.A. and Font, R., J. Anal. Appl. Pyrol., 2015, vol. 113, pp. 202–215. https://doi.org/10.1016/j.jaap.2014.12.017

    Article  CAS  Google Scholar 

  30. Garrido, M.A., Font, R., and Conesa, J.A., Waste Manage, 2016, vol. 52, pp. 138–146. https://doi.org/10.1016/j.wasman.2016.04.007

    Article  CAS  Google Scholar 

  31. Yao, Z., Yu, S., Su, W., Wu, D., Liu, J., Wu, W., and Tang, J., J. Therm. Anal. Calorim., 2020, vol. 141, pp. 1137–1148. https://doi.org/10.1007/s10973-019-09086-8

    Article  CAS  Google Scholar 

  32. Wang, X., Jin, Q., Zhang, J., Li, Y., Li, Sh., Mikulčić, H., Vujanović, M., Tan, H., and Duić, N., Energy Conv. Manage, 2018, vol. 164, pp. 353–362. https://doi.org/10.1016/j.enconman.2018.02.082

    Article  CAS  Google Scholar 

  33. Xu, D., Yu, K., and Qian, K., Polym. Test, 2018, vol. 67, pp. 159–168. https://doi.org/10.1016/j.polymertesting.2018.01.034

    Article  CAS  Google Scholar 

  34. Jiang, L., Zhang, D., Li, M., He, J.-J., Gao, Z.-H., Zhou, Y., and Sun, J.-H., Fuel, 2018, vol. 222, pp. 11–20. https://doi.org/10.1016/j.fuel.2018.02.143

    Article  CAS  Google Scholar 

  35. Tang, X., Chen, Z., Liu, J., Chen, Z., Xie, W., Evrendilek, F., and Buyukada, M., J. Hazard. Mater., 2021, vol. 402, ID 123516. https://doi.org/10.1016/j.jhazmat.2020.123516

    Article  CAS  PubMed  Google Scholar 

  36. Gaboriaud, F. and Vantelon, J.P., J. Polym. Sci. Part A, 1982, vol. 20, no. 8, pp. 2063–2071. https://doi.org/10.1002/pol.1982.170200809

    Article  CAS  Google Scholar 

  37. Jiao, L., Xiao, H., Wang, Q., and Sun, J., Polym. Degrad. Stab., 2013, vol. 98, no. 12, pp. 2687–2696. https://doi.org/10.1016/j.polymdegradstab.2013.09.032

    Article  CAS  Google Scholar 

  38. Grittner, N., Kaminsky, W., and Obst, G., J. Anal. Appl. Pyrol., 1993, vol. 25, pp. 293–299. https://doi.org/10.1016/0165-2370(93)80048-5

    Article  CAS  Google Scholar 

  39. Herrera, M., Matuschek, G., and Kettrup, A., J. Anal. Appl. Pyrol., 2002, vol. 78, no. 2, pp. 323–331. https://doi.org/10.1016/S0141-3910(02)00181-7

    Article  CAS  Google Scholar 

  40. Nishiyama, Y., Kumagai, Sh., Motokucho, S., Kameda, T., Saito, Y., Watanabe, A., Nakatani, H., and Yoshioka, T., J. Anal. Appl. Pyrol., 2020, vol. 145, ID 104754. https://doi.org/10.1016/j.jaap.2019.104754

    Article  CAS  Google Scholar 

  41. Kumagai, Sh., Motokucho, S., Yabuki, R., Anzai, A., Kameda, T., Watanabe, A., Nakatani, H., and Yoshioka, T., J. Anal. Appl. Pyrol., 2017, vol. 126, pp. 337–345. https://doi.org/10.1016/j.jaap.2017.05.012

    Article  CAS  Google Scholar 

  42. Lattimer, R.P. and Williams, R.C., J. Anal. Appl. Pyrol., 2002, vol. 63, no. 1, pp. 85–104. https://doi.org/10.1016/S0165-2370(01)00143-7

    Article  CAS  Google Scholar 

  43. Wang, H., Wang, Q., He, J., Mao Zh., and Sun, J., Proced. Eng., 2013, vol. 52, pp. 377–385. https://doi.org/10.1016/j.proeng.2013.02.156

    Article  CAS  Google Scholar 

  44. He J.-J., Jiang, L., Sun J.-H., and Lo, S., J. Anal. Appl. Pyrol., 2016, vol. 120, pp. 269–283. https://doi.org/10.1016/j.jaap.2016.05.015

    Article  CAS  Google Scholar 

  45. Lattimer, R.P., Muenster, H., and Budzikiewicz, H., J. Anal. Appl. Pyrol., 1990, vol. 17, no. 3, pp. 237–249. https://doi.org/10.1016/0165-2370(90)85013-D

    Article  CAS  Google Scholar 

  46. Lattimer, R.P., Polce, M.J., and Wesdemiotis, C., J. Anal. Appl. Pyrol., 1998, vol. 48, no. 1, pp. 1–15. https://doi.org/10.1016/S0165-2370(98)00092-8

    Article  CAS  Google Scholar 

  47. Yang, R., Wang, B., Li, M., Zhang, X., and Li, J., Ind. Crops Prod., 2019, vol. 136, pp. 121–128. https://doi.org/10.1016/j.indcrop.2019.04.073

    Article  CAS  Google Scholar 

  48. Sun, L., Li, K., Xue, W., and Zeng, Z., J. Adhes. Sci. Technol., 2017, vol. 32, no. 6, pp. 1–11. https://doi.org/10.1080/01694243.2017.1408184

    Article  CAS  Google Scholar 

  49. Font, R., Fullana, A., Caballero, J.A., Candela, J., and García, A., J. Anal. Appl. Pyrol., 2001, vol. 58–59, pp. 63–77. https://doi.org/10.1016/S0165-2370(00)00138-8

    Article  Google Scholar 

  50. Pagacz, J., Hebda, E., Michałowski, S., Ozimek, J., Sternik, D., and Pielichowski, K., J. Anal. Appl. Pyrol., 2015, vol. 113, pp. 202–215. https://doi.org/10.1016/j.tca.2016.09.006

    Article  CAS  Google Scholar 

  51. Eschenbacher, A., Varghese, R.J., Weng, J., and Van Geem, K.M., J. Anal. Appl. Pyrol., 2021, vol. 160, ID 105374. https://doi.org/10.1016/j.jaap.2021.105374

    Article  CAS  Google Scholar 

  52. Garrido, M.A., Gerecke, A.C., Heeb, N., Font, R., and Conesa, J.A., Chemosphere, 2017, vol. 168, pp. 667–675. https://doi.org/10.1016/j.chemosphere.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  53. Bozi, J. and Blazsó, M., J. Anal. Appl. Pyrol., 2012, vol. 97, pp. 189–197. https://doi.org/10.1016/j.jaap.2012.06.002

    Article  CAS  Google Scholar 

  54. Bozi, J., Mihályi, M.R., and Blazsó, M., J. Anal. Appl. Pyrol., 2013, vol. 101, pp. 103–110. https://doi.org/10.1016/j.jaap.2013.02.005

    Article  CAS  Google Scholar 

  55. Guo, X., Zhang, W., Wang, L., and Hao, J., J. Anal. Appl. Pyrol., 2016, vol. 120, pp. 144–153. https://doi.org/10.1016/j.jaap.2016.04.018

    Article  CAS  Google Scholar 

  56. Guo, X., Wang, L., Zhang, L., Li, Sh., and Hao, J., J. Anal. Appl. Pyrol., 2014, vol. 108, pp. 143–150. https://doi.org/10.1016/j.jaap.2014.05.006

    Article  CAS  Google Scholar 

  57. Kumagai, Sh., Yabuki, R., Kameda, T., Saito, Y., and Yoshioka, T., Chem. Eng., J., 2019, vol. 361, pp. 408–415. https://doi.org/10.1016/j.cej.2018.12.099

    Article  CAS  Google Scholar 

  58. Terakado, O., Yanase, H., and Hirasawa, M., J. Anal. Appl. Pyrol., 2014, vol. 108, pp. 130–135. https://doi.org/10.1016/j.jaap.2014.05.008

    Article  CAS  Google Scholar 

  59. Yuan, Y., Yu, B., Shi, Y., Ma, Ch., Song, L., Hu, W., and Hu, Y., Comp. Part A: Appl. Sci. Manufact., 2018, vol. 112, pp. 142–154. https://doi.org/10.1016/j.compositesa.2018.05.028

    Article  CAS  Google Scholar 

  60. Cruz, M.I.S.D., Thongsa, N., de Luna, M.D.G., In, I., and Paoprasert, P., Coll. Surf. A: Physicochem. Eng. Aspects, 2019, vol. 568, pp. 184–194. https://doi.org/10.1016/j.colsurfa.2019.02.022

    Article  CAS  Google Scholar 

  61. Datta, J. and Włoch, M., Polyurethane Polymers Blends and Interpenetrating Polymer Networks, Chapter 14: Recycling of Polyurethanes, Sabu, T., Datta, J., Haponiuk, J., and Reghunadhan, A., Ed., Amsterdam: Elsevier, 2017. https://doi.org/10.1016/B978-0-12-804039-3.00014-2

    Book  Google Scholar 

  62. Williamson, J.E., Cocksedge, M.J., and Evans, N., J. Anal. Appl. Pyrol., 1980, vol. 2, no. 3, pp. 195–205. https://doi.org/10.1016/0165-2370(80)80031-3

    Article  CAS  Google Scholar 

  63. Scholz, Ph., Wachtendorf, V., Panne, U., and Weidner, S.M., Polym. Test, 2019, vol. 77, ID 105881. https://doi.org/10.1016/j.polymertesting.2019.04.028

    Article  CAS  Google Scholar 

  64. Wu, G., Li, J., and Luo, Y., Polym. Degrad. Stab., 2016, vol. 123, pp. 36–46. https://doi.org/10.1016/j.polymdegradstab.2015.11.004

    Article  CAS  Google Scholar 

  65. Deng, Y., Dewil, R., Appels, L., Ansart, R., Baeyens, J., and Kang, Q., J. Environ. Manage, 2021, vol. 278, Part 1, ID 111527. https://doi.org/10.1016/j.jenvman.2020.111527

    Article  CAS  PubMed  Google Scholar 

  66. Daniel, G., Kosmala, T., Dalconi, M.Ch., Nodari, L., Badocco, D., Pastore, P., Lorenzetti, A., Granozzi, G., and Durante, Ch., Electrochim. Acta, 2020, vol. 362, ID 137200. https://doi.org/10.1016/j.electacta.2020.13720

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Institute of Petrochemical Synthesis named after V.I. A. V. Topchiev RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Zakharyan.

Ethics declarations

A. L. Maksimov is the editor-in-chief of the Journal of Applied Chemistry. E. M. Zakharyan has no conflict of interest that requires disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 164–230, February, 2022 https://doi.org/10.31857/S0044461822020026

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharyan, E.M., Maksimov, A.L. Pyrolysis of Polyurethanes. Process Features and Composition of Reaction Products. Russ J Appl Chem 95, 191–255 (2022). https://doi.org/10.1134/S1070427222020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222020033

Keywords:

Navigation