Skip to main content
Log in

Synthesis of Struvite in Aqueous-Salt Systems in which Competing Phases of Magnesium Phosphate Crystal Hydrates of Different Compositions Can Be Formed

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic, kinetic, and structural approaches were combined to reveal the major factors determining the phase formation in aqueous-salt systems in which crystal hydrates of different compositions can be formed. The solution supersaturation indices with respect to magnesium phosphate crystal hydrates of different compositions were calculated by modeling of chemical equilibria, and the thermodynamic probability of the formation of their solid phases in aqueous-salt systems of different compositions was refined using these data. Primary precipitation of metastable struvite under the conditions of its possible competition with other, more stable phases was substantiated. A decrease in the content of ammonium ions in struvite was accounted for by isomorphic substitution of NH4+ ions in the solid phase by the xН+xʹН2O group without changes in the struvite structure, and the possibility of reverse saturation of struvite with ammonium ions by ion exchange was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. https://vminteq.lwr.kth.se/download/.

REFERENCES

  1. Hidalgo, D., Martín-Marroquín, J.M., and Corona, F., Renew. Sustain. Energ. Rev., 2019, vol. 111, pp. 481–489. https://doi.org/10.1016/j.rser.2019.05.048

    Article  CAS  Google Scholar 

  2. Liu, Z.-G., Min, X.-B., Feng, F., Tang, X., Li, W.-C., Peng, C., Gao, T.-Y., Chai, X.-L., and Tang, C.-J., Sci. Total Environ., 2021, vol. 760, ID 144311. https://doi.org/10.1016/j.scitotenv.2020.144311

    Article  CAS  PubMed  Google Scholar 

  3. Mehta, C.M., Khunjar, W.O., Nguyen, V., and Batstone, S.T.D.J., Crit. Rev. Environ. Sci. Technol., 2015, vol. 45, no. 4, pp. 385–427. https://doi.org/10.1080/10643389.2013.866621

    Article  Google Scholar 

  4. Lam, K.L., Zlatanović, L., and Hoek, J.P., Water Res., 2020, vol. 173, ID 115519. https://doi.org/10.1016/j.watres.2020.115519

    Article  CAS  PubMed  Google Scholar 

  5. Sena, M., Seib, M., Noguera, D.R., and Hicks, A., J. Clean. Prod., 2021, vol. 280, ID 124222. https://doi.org/10.1016/j.jclepro.2020.124222

    Article  CAS  Google Scholar 

  6. Ye, Z., Shen, Y., Ye, X., Zhang, Z., Chen, S., and Shi, J., J. Environ. Sci., 2014, vol. 26, no. 5, pp. 991–1000. https://doi.org/10.1016/S1001-0742(13)60536-7

    Article  CAS  Google Scholar 

  7. Rahman, M.M., Salleh, M.A.M., Rashid, U., Ahsan, A., Hossain, M.M., and Ra, C.S., Arab. J. Chem., 2014, vol. 7, no. 1, pp. 139–155. https://doi.org/10.1016/j.arabjc.2013.10.007

    Article  CAS  Google Scholar 

  8. Schneider, P., Wallace, J.W., and Tickle, J.C., Water Sci. Technol., 2013, vol. 67, no. 12, pp. 2724–2732. https://doi.org/10.2166/wst.2013.184

    Article  CAS  PubMed  Google Scholar 

  9. Majzlan, J., Mineral Mag., 2020, vol. 84, no. 3, pp. 367–375. https://doi.org/10.1180/mgm.2020.19

    Article  CAS  Google Scholar 

  10. Muys, M., Phukan, R., Brader, G., Samad, A., Moretti, M., Haiden, B., Pluchon, S., Roest, K., Vlaeminck, S.E., and Spiller, M., Sci. Total Environ., 2021, vol. 756, ID 143726. https://doi.org/10.1016/j.scitotenv.2020.143726

    Article  CAS  Google Scholar 

  11. Thapa, S., Ha, T.Y., Lee, H., Adelodun, A.A., and Min, J.Y., J. Mater. Cycles Waste Manag., 2018, vol. 20, pp. 293–301. https://doi.org/10.1007/s10163-016-0579-8

    Article  CAS  Google Scholar 

  12. Li, B., Boiarkina, I., Yu, W., Huang, H.M., Munir, T., Wang, G.Q., and Young, B.R., Sci. Total Environ., 2019, vol. 648, pp. 1244–1256. https://doi.org/10.1016/j.scitotenv.2018.07.166

    Article  CAS  PubMed  Google Scholar 

  13. Schneider, P.A., Wallace, J.W., and Tickle, J.C., Water Sci. Technol., 2013, vol. 67, no. 12, pp. 2724–2732. https://doi.org/10.2166/wst.2013.184

    Article  CAS  PubMed  Google Scholar 

  14. Vol’khin, V.V., Kazakov, D.A., Leont’eva, G.V., Andreeva, Y.V., Nosenko, E.A., and Siluyanova, M.Y., Russ. J. Appl. Chem., 2015, vol. 88, no. 12, pp. 1986–1996. https://doi.org/10.1134/S10704272150120149.

    Article  Google Scholar 

  15. Kafarov, V.V., Dorokhov, I.N., and Markov, E.P., Sistemnyi analiz protsessov khimicheskoi tekhnologii: metody neravnovesnoi termodinamiki (Systems Analysis of Processes of Chemical Technology: Methods of Nonequilibrium Thermodynamics), Moscow: Yurait, 2018.

    Google Scholar 

  16. Kuznetsova, Yu.V., Vol’khin, V.V., Kazakov, D.A., Leont’eva, G.V., Nosenko, E.A., and Shutova, A.V., Butlerovsk. Soobshch., 2016, vol. 47, no. 9, pp. 36–47.

    Google Scholar 

  17. Crutchik, D. and Garrido, J.M., Chemosphere, 2016, vol. 54, pp. 567–572. https://doi.org/10.1016/j.chemosphere.2016.03.134

    Article  CAS  Google Scholar 

  18. Ferraris, G., Fuess, H., and Joswing, W., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 1986, vol. 42, pp. 253–258. https://doi.org/10.1107/S0108768186098269

    Article  Google Scholar 

  19. Goñi, A., Pizarro, Z. L., Lezama, L.M., Barberis, G.E., Arriortura, M.I., and Rojo, T., J. Mater. Chem., 1996, vol. 6, no. 3, pp. 421–427. https://doi.org/10.1039/JM9960600421

    Article  Google Scholar 

  20. Graeser, S., Postl, W., Bojar, H.P., Berlepsch, P., Armbruster, T., Raber, T., Ettinger, K., and Walter, F., Eur. J. Mineral., 2008, vol. 20, pp. 629–633. https://doi.org/10.1127/0935-1221/2008/0020-1810

    Article  CAS  Google Scholar 

  21. Wang, X.-W., Wang, P., and Zheng, Y.-Q., Z. Kristallogr.–New Cryst. Struct., 2005, vol. 220, pp. 629–633. https://doi.org/10.1524/ncrs.2005.220.14.341

    Article  Google Scholar 

  22. Takagi, S., Mathew, M., and Brown, W.E., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 1982, vol. 38, pp. 44–55. https://doi.org/10.1107/S0567740882002015

    Article  Google Scholar 

  23. Dickens, B. and Brown, W.E., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 1972, vol. 28, pp. 3056–3065. https://doi.org/10.1107/S0567740872007411

    Article  CAS  Google Scholar 

  24. Abbona, F. and Haser, R., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 1979, vol. 35, pp. 2514–2518. https://doi.org/10.1107/S0567740879009791

    Article  CAS  Google Scholar 

  25. Takagi, S., Mathew, M., and Brown, W.E., Am. Mineral., 1986, vol. 71, pp. 1229–1233. https://doi.org/10.1016/j.chemosphere.2016.03.134

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 20-33-90100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Permyakova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 11, pp. 1283–1296, December, 2021 https://doi.org/10.31857/S0044461821100030

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, Y.V., Vol’khin, V.V. & Permyakova, I.A. Synthesis of Struvite in Aqueous-Salt Systems in which Competing Phases of Magnesium Phosphate Crystal Hydrates of Different Compositions Can Be Formed. Russ J Appl Chem 94, 1469–1482 (2021). https://doi.org/10.1134/S1070427221110021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221110021

Keywords:

Navigation