Skip to main content
Log in

Extraction Methods for Removing Sulfur and Its Compounds from Crude Oil and Petroleum Products

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Sulfur is present in crude oil and petroleum products in the form of various compounds: mercaptans, hydrogen sulfide, sulfides, disulfides, thiophene derivatives, high-molecular-mass heterocyclic compounds, etc. The content of elemental sulfur in petroleum feedstock is low (up to 0.1%). Sulfur negatively affects the service and transportation properties of oil; therefore, the content of sulfur compounds in petroleum products and commercial oil is strictly limited. Numerous methods are used today for removing sulfur compounds from petroleum feedstock, such as hydrotreating, bio- and oxidative desulfurization, extraction, including supercritical fluid extraction, adsorption, alkylation, etc. This review deals with the use of extraction methods for treating petroleum feedstock to remove various sulfur-containing compounds. Particular attention is paid to papers dealing with the use of cheap and available polar organic solvents and inorganic chemicals for removing sulfur and its compounds both from model solutions and from crude oils and petroleum fractions. Also, search for new “green” solvents such as ionic liquids and eutectic mixtures, allowing removal of sulfur compounds from crude oil, shows promise. As a rule, complete removal of sulfur-containing compounds from oil samples by extraction requires a multistep extraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009. http://data.europa.eu/eli/dir/2009/30/2016-06-10.

REFERENCES

  1. Bol’shakov, G.F., Seraorganicheskie soedineniya nefti (Organic Sulfur Compounds of Curde Oil), Novosibirsk: Nauka, 1986.

    Google Scholar 

  2. Shmal’, G., Zamrii, A., Viktorova, R., and Alieva, L., Neftegaz. Vert., 2020, nos. 3–4, pp. 102–108. http://www.ngv.ru/magazines/article/neft-bez-sery-eto-realnost/.

  3. Saleh, T.A., Trends Environ. Anal. Chem., 2020, vol. 25, ID e00080. https://doi.org/10.1016/j.teac.2020.e00080

    Article  CAS  Google Scholar 

  4. Song, C. and Ma, X., Appl. Catal. B, 2003, vol. 41, nos. 1–2, pp. 207–238. https://doi.org/10.1016/S0926-3373(02)00212-6

    Article  CAS  Google Scholar 

  5. Javadli, R. and Klerk, A., Appl. Petrochem. Res., 2012, vol. 1, pp. 3–19. https://doi.org/10.1007/s13203-012-0006-6

    Article  CAS  Google Scholar 

  6. Pawelec, B., Navarro, R.N., Campos-Martin, J.M., and Fierro, J.L.G., Catal. Sci. Technol., 2011, vol. 1, pp. 23–42. https://doi.org/10.1039/C0CY00049C

    Article  CAS  Google Scholar 

  7. Aitani, A.M., Ali, M.F., and Al-Ali, H.H., Petrol. Sci. Technol., 2000, vol. 18, nos. 5–6, pp. 537–553. https://doi.org/10.1080/10916460008949859

    Article  CAS  Google Scholar 

  8. Babich, I.V. and Moulijn, J.A., Fuel, 2003, vol. 82, pp. 607–631. https://doi.org/10.1016/S0016-2361(02)00324-1

    Article  CAS  Google Scholar 

  9. Srivastava, V.C., RSC Adv., 2012, vol. 2, pp. 759–783. https://doi.org/10.1039/C1RA00309G

    Article  Google Scholar 

  10. Song, C., Catal. Today, 2003, vol. 86, nos. 1–4, pp. 211–263. https://doi.org/10.1016/S0920-5861(03)00412-7

    Article  CAS  Google Scholar 

  11. Al-Degs, Y.S., El-Sheikh, A.H., Al Bakain, R.Z., Newman, A.P., and Al-Ghouti, M.A., Energy Technol., 2016, vol. 4, no. 6, pp. 679–699. https://doi.org/10.1002/ente.201500475

    Article  Google Scholar 

  12. Rang, H., Kann, J., and Oja, V., Oil Shale, 2006, vol. 23, no. 2, pp. 164–176. https://kirj.ee/public/oilshale/oil-2006-2-9.pdf.

    CAS  Google Scholar 

  13. Song, C. and Ma, X., Int. J. Green Energy, 2004, vol. 1, no. 2, pp. 167–191. https://doi.org/10.1081/GE-120038751

    Article  CAS  Google Scholar 

  14. Stanislaus, A., Marafi, A., and Rana, M.S., Catal. Today, 2010, vol. 153, nos. 1–2, pp. 1–68. https://doi.org/10.1016/j.cattod.2010.05.011

    Article  CAS  Google Scholar 

  15. Fedyaeva, O.N. and Vostrikov, A.A., Vestn. Ross. Fonda Fundam. Issled., 2017, no. 1 (93), pp. 114–122. https://www.rfbr.ru/rffi/ru/bulletin/o_2039792#114.

    Google Scholar 

  16. Kumar, S., Srivastava, V.C., and Nanoti, S.M., Sep. Purif. Rev., 2017, vol. 46, no. 4, pp. 319–347. https://doi.org/10.1080/15422119.2017.1288633

    Article  CAS  Google Scholar 

  17. Cusack, R.W., Fremeaux, P., and Otto, Y.N.V., Chem. Eng., 1991, vol. 98, no. 2, pp. 66–76.

    CAS  Google Scholar 

  18. Gaile, A.A. and Klement’ev, V.N., Khim. Khim. Tekhnol., 2018, no. 46, pp. 39–45.

    Google Scholar 

  19. Abro, R., Abdeltawa, A.A., Al-Deyab, S.S., Yu, G., Qaz, A.Q., Gao, S., and Chen, X., RSC Adv., 2014, vol. 4, pp. 35302–35317. https://doi.org/10.1039/C4RA03478C

    Article  CAS  Google Scholar 

  20. Ibrahim, M.H., Hayyan, M., Hashim, M.A., and Hayyan, A., Renew. Sustain. Energy Rev., 2017, vol. 76, pp. 1534–1549. https://doi.org/10.1016/j.rser.2016.11.194

    Article  CAS  Google Scholar 

  21. Swapnil, D., Res. J. Chem. Sci., 2012, vol. 2, no. 8, pp. 80–85. http://isca.me/rjcs/Archives/v2/i8/15.ISCA-RJCS-2012-110.pdf.

    Google Scholar 

  22. Gaile, A.A., Klement’ev, V.N., and Vereshchagin, A.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 4, pp. 453–475. https://doi.org/10.1134/S1070427219040013 

    Article  CAS  Google Scholar 

  23. Chandran, D., Khalid, M., Walvekar, R., Mubarak, N.M., Dharaskar, S., Wong, W.Y., and Gupta, T.C.S.M., J. Mol. Liq., 2019, vol. 275, pp. 312–322. https://doi.org/10.1016/j.molliq.2018.11.051

    Article  CAS  Google Scholar 

  24. Majid, M.F. and Mo, H.F., J. Mol. Liq., 2020, vol. 306, ID 112870. https://doi.org/10.1016/j.molliq.2020.112870

    Article  CAS  Google Scholar 

  25. Qi, W., Li, Y., Liu, Z., Li, X., Jiang, Y., and Sun, H., Chem. Eng. Sci., 2020, vol. 228, ID 115979. https://doi.org/10.1016/j.ces.2020.115979

    Article  CAS  Google Scholar 

  26. Timko, M.T., Ghoniem, A.F., and Green, W.H., J. Supercritical Fluids, 2015, vol. 96, pp. 114–123. https://doi.org/10.1016/j.supflu.2014.09.015

    Article  CAS  Google Scholar 

  27. Bedda, K., Hamada, B., Semikin, K.V., and Kuzichkin, N. V., Petrol. Coal, 2019, vol. 61, no. 6, pp. 1352–1360. https://www.vurup.sk/wp-content/uploads/2019/11/PC-X-2019_Bedda-140.pdf.

    CAS  Google Scholar 

  28. Vereshchagin, A.V., Gaile, A.A., Klement’ev, B.N., and Lazunenko, F.A., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2017, no. 40, pp. 69–76.

    Google Scholar 

  29. Kumar, S., Srivastava, V.C., Raghuvanshi, R., Nanoti, S.M., and Sudhir, M., Energy Fuels, 2015, vol. 29, no. 7, pp. 4634–4643. https://doi.org/10.1021/acs.energyfuels.5b00834

    Article  CAS  Google Scholar 

  30. Kameshkov, A.V., Gaile, A.A., Kuzichkin, N.V., and Khasanova, A.A., Neftepererab. Neftekhim., 2015, no. 12, pp. 3–6.

    Google Scholar 

  31. Kameshkov, A.V., Gaile, A.A., Kuzichkin, N.V., and Spetsov, E.A., Neftepererab. Neftekhim., 2015, no. 10, pp. 6–11.

    Google Scholar 

  32. Shishkin, S.N., Gaile, A. A., Bakaushina, D.A., and Kuzichkin, N.V., Russ. J. Appl. Chem., 2013, vol. 86, no. 5, pp. 654–657. https://doi.org/10.1134/S1070427213050078 

    Article  CAS  Google Scholar 

  33. Vereshchagin, A.V., Gaile, A.A., Klement’ev, B.N., Lazunenko, F.A., and Vorob’eva, A.R., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2019, no. 49 (75), pp. 32–35.

    Google Scholar 

  34. Saha, B., Sengupta, S., and Selvin, R., Sep. Sci. Technol., 2019, vol. 55, no. 6, pp. 1123–1132. https://doi.org/10.1080/01496395.2019.1580292

    Article  CAS  Google Scholar 

  35. Kumar, S., Srivastava, V.C., Kumar, A., and Nanoti, S.M., RSC Adv., 2016, vol. 6, pp. 25293–25301. https://doi.org/10.1039/C5RA27757D

    Article  CAS  Google Scholar 

  36. Kumar, S., Srivastava, V.C., Nanoti, S.M., Nautiyal, B.R., and Siyaram, RSC Adv., 2014, no. 4, pp. 38830–38838. https://doi.org/10.1039/C4RA05841K

    Article  CAS  Google Scholar 

  37. Mokhtar, W.N.A.W., Bakar, W.A.W.A., Ali, R., and Kadir, A.A.A., J. Ind. Eng. Chem., 2015, vol. 30, pp. 274–280. https://doi.org/10.1016/j.jiec.2015.05.033

    Article  CAS  Google Scholar 

  38. Toteva, V., Topalova, L., and Manolova, P., J. Univ. Chem. Technol. Metall., 2007, vol. 42, no. 1, pp. 17–20. https://dl.uctm.edu/journal/node/j2007-1/02-Toteva-17-20.pdf.

    CAS  Google Scholar 

  39. Gaile, A.A., Chistyakov, V.N., Koldobskaya, L.L., and Kolesov, V.V., Neftepererab. Neftekhim., 2011, no. 12, pp. 23–27.

    Google Scholar 

  40. Kobotaeva, N.S., Skorokhodova, T.S., Andrienko, O.S., Marakina, E.I., and Sachkov, V.I., Appl. Sci., 2018, vol. 8, ID 1259. https://doi.org/10.3390/app8081259

    Article  CAS  Google Scholar 

  41. Lyapina, N.K., Marchenko, G.N., Parfenova, M.A., Galkin, E.G., Grishina, R.E., and Nugumanov, R.M., Bashk. Khim. Zh., 2007, vol. 14, no. 12, pp. 55–62

    CAS  Google Scholar 

  42. Kameshkov, A.V., Gaile, A.A., Kuzichkin, N.V., and Spetsov, E.A., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2015, no. 32, pp. 72–74.

    Google Scholar 

  43. Mokhtar, W.N.A.W., Bakar, W.A.W.A., Rusmidah Ali, R., and Kadir, A.A.A., J. Taiwan Inst. Chem. Eng., 2014, vol. 45, pp. 1542–1548. https://doi.org/10.1016/j.jtice.2014.03.017

    Article  CAS  Google Scholar 

  44. Karonis, D., Pettas, P., Lois, C., and Bardakos, D., IOSR J. Appl. Chem. (IOSR-JAC), 2019, vol. 12, no. 5, pp. 34–42. https://doi.org/10.9790/5736-1205013442

    Article  CAS  Google Scholar 

  45. Toteva, V., Oxid. Commun., 2010, vol. 33, no. 1, pp. 147–155. https://scibulcom.net/en/article/U57nM1kxkVMvTWlbpAJW.

    CAS  Google Scholar 

  46. Pasadakis, N., Karonis, D., and Mintza, A., Fuel Process. Technol., 2011, vol. 92, no. 8, pp. 1568–1573. https://doi.org/10.1016/j.fuproc.2011.03.023

    Article  CAS  Google Scholar 

  47. Vereshchagin, A.V., Gaile, A.A., Klement’ev, V.N., and Dolgov, S.A., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2018, no. 45, pp. 37–42.

    Google Scholar 

  48. Adzamic, T., Sertić-Bionda, K., and Marcec-Rahelic, N., Petrol. Sci. Technol., 2010, vol. 28, pp. 1936–1945. https://doi.org/10.1080/10916460903330056

    Article  CAS  Google Scholar 

  49. Adzamic, T., Sertić-Bionda, K., and Zoretić, Z., Nafta, 2009, vol. 60, no. 9, pp. 485–490. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=65039.

    CAS  Google Scholar 

  50. Gaile, A.A., Saifidinov, B.M., Kolesov, V.V., and Koldobskaya, L.L., Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 464–472. https://doi.org/10.1134/S1070427210030171 

    Article  CAS  Google Scholar 

  51. Gaile, A.A., Saifidinov, B.M., Kolesov, V.V., and Koldobskaya, L.L., Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 473–476. https://doi.org/10.1134/S1070427210030183 

    Article  CAS  Google Scholar 

  52. Gaile, A.A., Saifidinov, B.M., and Koldobskaya, L.L., Neftepererab. Neftekhim., 2011, no. 3, pp. 11–15.

    Google Scholar 

  53. Katasonova, O.N., Savonina, E.Y., and Maryutina, T.A., J. Anal. Chem., 2020, vol. 75, pp. 148–153. https://doi.org/10.1134/S1061934820020070

    Article  CAS  Google Scholar 

  54. Kianpour, E. and Azizian, S., Fuel, 2014, vol. 137, pp. 36–40. https://doi.org/10.1016/j.fuel.2014.07.096

    Article  CAS  Google Scholar 

  55. Li, Z., Yingna Cui, Y., Li, C., and Shen, Y., Sep. Purif. Technol., 2019, vol. 219, pp. 9–15. https://doi.org/10.1016/j.seppur.2019.03.003

    Article  CAS  Google Scholar 

  56. Gao, J., Zhu, S., Dai, Y., Xiong, C., Li, C., Yang, W., and Jiang, X., Fuel, 2018, vol. 233, pp. 704–713. https://doi.org/10.1016/j.fuel.2018.06.101

    Article  CAS  Google Scholar 

  57. Moghadam, F.R., Kianpour, E., Azizian, S., Yarie, M., and Zolfigol, M.A., Royal Soc. Open Sci., 2020, vol. 7, ID 200803. https://doi.org/10.1098/rsos.200803

    Article  CAS  Google Scholar 

  58. Petkov, P., Tasheva, J., and Stratiev, D., Petrol. Coal, 2004, vol. 42, no. 2, pp. 13–18. https://www.vurup.sk/wp-content/uploads/dlm_uploads/2017/07/pc_petkov.pdf.

    Google Scholar 

  59. Lyapina, N.K., Akhmetov, A.F., Krasil’nikova, Yu.V., Parfenova, M.A., and Organyuk, Yu.V., Bashk. Khim. Zh., 2013, vol. 20, no. 4, pp. 105–107.

    CAS  Google Scholar 

  60. Zhao, K., Cheng, Y., Liu, H., Yang, C., Qiu, L. Zeng, G., and He, H., RSC Adv., 2015, vol. 5, pp. 66013–66023. https://doi.org/10.1080/10916466.2019.1570259

    Article  CAS  Google Scholar 

  61. Mesdour, S., Boufades, D., Moussiden, A., and Hamada, B., Petrol. Sci. Technol., 2019, vol. 37, no. 15, pp. 1755–1762. https://doi.org/10.1080/10916466.2019.1570259

    Article  CAS  Google Scholar 

  62. Hassan, S.I., Sif El-Din, O.I., and Tawfik, S.M., J. Appl. Sci. Res., 2009, vol. 5, pp. 515–521. http://www.aensiweb.com/old/jasr/jasr/2009/515-521.pdf.

    Google Scholar 

  63. Abd El-Aty, D.M., Sif El-Din, O.I., Hassan, S.I., Tawfik, S.M., and Hanafi, S., Petrol. Sci. Technol., 2009, vol. 27, pp. 861–873. https://doi.org/10.1080/10916460802096279

    Article  CAS  Google Scholar 

  64. Kopylov, A.Yu., Mazgarov, A.M., and Vil’danov, A.F., Khim. Prom–st. Segodnya, 2010, no. 4, pp. 45–53.

    Google Scholar 

  65. Savonina, E.Yu., Katasonova, O.N., and Maryutina, T.A., Zavod. Lab., 2020, vol. 86, no. 3, pp. 5–10. https://doi.org/10.26896/1028-6861-2020-86-3-5-10

    Article  Google Scholar 

  66. Abd Al-Khodor, Y.A. and Albayati, T.M., Process Safety Environ. Prot., 2020, vol. 136, pp. 334–342. https://doi.org/10.1016/j.psep.2020.01.036

    Article  CAS  Google Scholar 

  67. Akopyan, A.V., Andreev, B.V., Anisimov, A.V., Eseva, E.A., Tarakanova, A.V., Ustinov, A.S., Kleimenov, A.V., Kondrashev, D.O., Khrapov, D.V., and Esipenko, R.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 6, pp. 865–873. https://doi.org/10.1134/S1070427210030183 

    Article  CAS  Google Scholar 

  68. Saha, B. and Sengupta, S., Energy Fuels, 2017, vol. 31, pp. 996–1004. https://doi.org/10.1021/acs.energyfuels.6b01842

    Article  CAS  Google Scholar 

  69. Kharlampidi, Kh.E., Soros. Obraz. Zh., 2000, vol. 6, no. 7, pp. 42–46. http://window.edu.ru/resource/464/21464/files/0007_042.pdf.

  70. Paucar, N.E., Kiggins, P., Blad, B., De Jesus, K., Afrin, F., Pashikanti, S., and Sharma, K., Environ. Chem. Lett., 2021, pp. 1–24. https://doi.org/10.1007/s10311-020-01135-1

    Article  CAS  Google Scholar 

  71. Khalilov, A.B., Ibrahimova, M.J., Huseynov, H.J., and Abbasov, V.M., Khim. Inter. Ustoich. Razv., 2019, vol. 27, pp. 109–119. https://doi.org/10.15372/KhUR2019117

    Article  Google Scholar 

  72. Bösmann, A., Datsevich, L., Jess, A., Lauter, A., Schmitz, C., and Wasserscheid, P., Chem. Commun., 2001, pp. 2494–2495. https://doi.org/10.1039/B108411A

    Article  Google Scholar 

  73. Kobotaeva, N.S. and Skorokhodova, T.S., Neftekhimiya, 2020, vol. 60, no. 4, pp. 476–482. https://doi.org/10.31857/S0028242120040061

    Article  Google Scholar 

  74. Wang, J.L., Zhao, D.S., and Li, K.X., Petrol. Sci. Technol., 2012, vol. 30, pp. 2417–2423. https://doi.org/10.1080/10916466.2010.518194

    Article  CAS  Google Scholar 

  75. Huang, C., Chen, B., Zhang, J., Liu, Z., and Li, Y., Energy Fuels, 2004, vol. 18, pp. 1862–1864. https://doi.org/10.1021/ef049879k

    Article  CAS  Google Scholar 

  76. Chu, X., Hu, Y., Li, J., Liang, Q., Liu, Y., Zhang, X., Peng, X., and Yue, W., Chin. J. Chem. Eng., 2008, vol. 16, no. 6, pp. 881–884. https://doi.org/10.1016/S1004-9541(09)60010-0

    Article  CAS  Google Scholar 

  77. Li, J., Lei, X.-J., Tang, X.-D., Zhang, X.-P., Wang, Z.-Y., and Jiao, S., Energy Fuels, 2019, vol. 33, pp. 4079–4088. https://doi.org/10.1021/acs.energyfuels.9b00307

    Article  CAS  Google Scholar 

  78. Al Kaisy, G.M.J., Mutalib, M.I.A., Bustam, M.A., Leveque, J.-M., and Muhammad, N., J. Environ. Chem. Eng., 2016, vol. 4, no. 4, pp. 4786–4793. https://doi.org/10.1016/j.jece.2016.11.011

    Article  CAS  Google Scholar 

  79. Player, L.C., Chan, B., Lui, M.Y., Masters, A.F., and Maschmeyer, T., ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 4087–4093. https://doi.org/10.1021/acssuschemeng.8b05585

    Article  CAS  Google Scholar 

  80. Nie, Y., Li, C., Meng, H., and Wang, Z., Fuel Process. Technol., 2008, vol. 8, pp. 978–983. https://doi.org/10.1016/j.fuproc.2008.04.003

    Article  CAS  Google Scholar 

  81. Raj, J.J., Magaret, S., Pranesh, M., Lethesh, K.C., Devi, W.C., and Mutalib, M.I.A., Sep. Purif. Technol., 2018, vol. 196, pp. 115–123. https://doi.org/10.1016/j.seppur.2017.08.050

    Article  CAS  Google Scholar 

  82. Dharaskar, S.A., Wasewar, K.L., Varma, M.N., and Shende, D.Z., Int. J. Energy Technol. Policy, 2016, vol. 12, no. 2, pp. 105–121. http://www.inderscience.com/offer.php?id=75659.

    Article  Google Scholar 

  83. Butt, H.S., Lethesh, K.C., and Fiksdahl, A., Sep. Purif. Technol., 2020, vol. 248, ID 116959. https://doi.org/10.1016/j.seppur.2020.116959

    Article  CAS  Google Scholar 

  84. Wang, J., Zhao, D., Zhou, E., and Dong, Z., J. Fuel Chem. Technol., 2007, vol. 35, no. 3, pp. 293–296. https://doi.org/10.1016/S1872-5813(07)60022-X

    Article  Google Scholar 

  85. Liu, D., Gui, J., Song, L., Zhang, X., and Sun, Z., Petrol. Sci. Technol., 2008, vol. 26, pp. 973–982. https://doi.org/10.1080/10916460600695496

    Article  CAS  Google Scholar 

  86. Asumana, C., Haque, M.R., Yu, L., Wu, X., Chen, X., and Yu, G., Sep. Sci. Technol., 2013, vol. 48, pp. 2582–2588. https://doi.org/10.1080/01496395.2013.804559

    Article  CAS  Google Scholar 

  87. Chen, X., Liu, G., Yuan, S., Asumana, C., Wang, W., and Yu, G., Sep. Sci. Technol., 2012, vol. 47, pp. 819–826. https://doi.org/10.1080/01496395.2011.637281

    Article  CAS  Google Scholar 

  88. Li, X., Zhang, J., Li, J., and Chen, B., Fuel, 2019, vol. 239, pp. 502–510. https://doi.org/10.1016/j.fuel.2018.11.052

    Article  CAS  Google Scholar 

  89. Wang, O., Zhang, T., Zhang, S., Fan, Y., and Chen, B., Sep. Purif. Technol., 2020, vol. 231, ID 115923. https://doi.org/10.1016/j.seppur.2019.115923

    Article  CAS  Google Scholar 

  90. Ren, Z., Wei, L., Zhou, Z., Zhang, F., and Wei Liu, W., Energy Fuels, 2018, vol. 32, no. 9, pp. 9172–9181. https://doi.org/10.1021/acs.energyfuels.8b01936

    Article  CAS  Google Scholar 

  91. Attia, M., Farag, S., Jaffer, S.A., and Chaouki, J., J. Clean. Prod., 2020, vol. 275, ID 124177. https://doi.org/10.1016/j.jclepro.2020.124177

    Article  CAS  Google Scholar 

  92. Rodríguez-Cabo, B., Rodríguez, H., Rodil, E., Arce, A., and Soto, A., Fuel, 2014, vol. 117, pp. 882–889. https://doi.org/10.1016/j.fuel.2013.10.012

    Article  CAS  Google Scholar 

  93. Chandran, D., Khalid, M., Walvekar, R., Mubarak, N.M., Dharaskar, S., Wong, W.Y., and Gupta, T.C.S.M., J. Mol. Liq., 2019, vol. 275, pp. 312–322. https://doi.org/10.1016/j.molliq.2018.11.051

    Article  CAS  Google Scholar 

  94. Abbott, A.P., Capper, G., Davies, D.L., Munro, H.L., Rasheed, R.K., and Tambyrajah, V., Chem. Commun., 2001, pp. 2010–2011. https://doi.org/10.1039/b106357j

    Article  CAS  Google Scholar 

  95. Smith, E.L., Abbott, A.P., and Ryder, K.S., Chem. Rev., 2014, vol. 114, no. 21, pp. 11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  96. Makoś, pp. and Boczkaj, G., J. Mol. Liq., 2019, vol. 296, ID 111916. https://doi.org/10.1016/j.molliq.2019.111916

    Article  CAS  Google Scholar 

  97. Kučan, K.Z. and Rogošić, M., J. Chem. Technol. Biotechnol., 2018, vol. 94, pp. 1282–1293. https://doi.org/10.1002/jctb.5885.

    Article  Google Scholar 

  98. Shirazinia, S., Semnani, A., Nekoeinia, M., Shirani, M., and Akbari, A., J. Mol. Liq., 2020, vol. 301, ID 112364. https://doi.org/10.1016/j.molliq.2019.112364

    Article  CAS  Google Scholar 

  99. Almashjary, K.H., Khalid, M., Dharaskar, S., Jagadish, P., Walvekar, R., and Gupta, T.C.S.M., Fuel, 2018, vol. 234, pp. 1388–1400. https://doi.org/10.1016/j.fuel.2018.08.005

    Article  CAS  Google Scholar 

  100. Jha, D., Haider, M.B., Kumar, R., and Balathanigaimani, M.S., J. Environ. Chem. Eng., 2020, vol. 8, ID 104182. https://doi.org/10.1016/j.jece.2020.104182

    Article  CAS  Google Scholar 

  101. Lee, H., Kang, S., Jin, Y., Jung, D., Park, K., Li, K., and Lee, J., Fuel, 2020, vol. 264, ID 116848. https://doi.org/10.1016/j.fuel.2019.116848

    Article  CAS  Google Scholar 

  102. Lima, F., Gouvenaux, J., Branco, L.C., Silvestre, A.J.D., and Marrucho, I.M., Fuel, 2018, vol. 234, pp. 414–421. https://doi.org/10.1016/j.fuel.2018.07.043

    Article  CAS  Google Scholar 

  103. Mjalli, F.S., Rahma, W.S.A., Al-Wahaibi, T., and Al-Hashmi, A.A., Chin. J. Chem. Eng., 2019. https://doi.org/10.1016/j.cjche.2019.03.033

    Article  Google Scholar 

  104. Al-Azzawi, M., Mjalli, F.S., Al-Hashmi, A., Al-Wahaibi, T., and Abu-jdayil, B., Chem. Eng. Process.: Process Intens., 2019, vol. 140, pp. 43–51. https://doi.org/10.1016/j.cep.2019.04.012

    Article  CAS  Google Scholar 

  105. Sudhir, N., Yadav, P., Nautiyal, B.R., Singh, R., Rastogi, H., and Chauhan, H., Sep. Sci. Technol., 2020, vol. 55, no. 3, pp. 554–563. https://doi.org/10.1080/01496395.2019.1569061

    Article  CAS  Google Scholar 

  106. Lima, F., Dave, M., Silvestre, A.J.D., Branco, L.C., and Marrucho, I.M., ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 11341–11349. https://doi.org/10.1021/acssuschemeng.9b00877

    Article  CAS  Google Scholar 

  107. Dharaskar, S., Sillanpa, M., and Tadi, K.K., Environ. Sci. Pollut. Res., 2018, vol. 25, pp. 17156–17167. https://doi.org/10.1007/s11356-018-1789-5

    Article  CAS  Google Scholar 

  108. Dharaskar, S., Sillanpaa, M., Wasewar, K., and Walvekar, R., Feasibility study of phosphonium ionic liquids as efficient solvent for sulfur extraction from liqup. fuels, Proc. Int. Engineering Research Conf.–12th EURECA 2019, AIP Conf. Proc. 2137, 020002-1–020002-10. https://doi.org/10.1063/1.5120978

  109. Tang, X., Zhang, Y., Li, J., Zhu, Y., Qing, D., and Deng, Y., Ind. Eng. Chem. Res., 2015, vol. 54, pp. 4625−4632. https://doi.org/10.1021/acs.iecr.5b00291

    Article  CAS  Google Scholar 

  110. Gano, Z.S., Mjalli, F.S., Al-Wahaibi, T., Al-Wahaibi, Y., and Al Nashef, I.M., Chem. Eng. Process., 2015, vol. 93, pp. 10–20. https://doi.org/10.1016/j.cep.2015.04.001

    Article  CAS  Google Scholar 

  111. Li, С., Zhang, J., Li, Z., Yin, J., Cui, Y., Liu, Y., and Yang, G., Green Chem., 2016, vol. 18, pp. 3789–3795. https://doi.org/10.1039/C6GC00366D

    Article  CAS  Google Scholar 

  112. Li, J., Xiao, H., Tang, X., and Zhou, M., Energy Fuels, 2016, vol. 30, no. 7, pp. 5411–5418. https://doi.org/10.1021/acs.energyfuels.6b00471

    Article  CAS  Google Scholar 

  113. Zhao, X., Zhu, G., Jiao, L., Yu, F., and Xie, C., Chem. Eur. J., 2018, vol. 24, pp. 11021–11032. https://doi.org/10.1002/chem.201801631

    Article  CAS  PubMed  Google Scholar 

  114. Zhu, S., Cheng, H., Dai, Y., Gao, J., and Jiang, X., Energy Fuels, 2020, vol. 34, no. 7, pp. 8186–8194. https://doi.org/10.1021/acs.energyfuels.0c01096

    Article  CAS  Google Scholar 

  115. Hatab, F.A., Darwish, A.S., Lemaoui, T., Warrag, S.E.E., Benguerba, Y., Kroon, M.C., and Al Nashef, I.M., J. Chem. Eng. Data, 2020, vol. 65, no. 11, pp. 5443–5457. https://doi.org/10.1021/acs.jced.0c00579

    Article  CAS  Google Scholar 

  116. Kiran, N., Abro, R., Abro, M., Shah, A.A., Jatoi, A.S., Bhutto, A.W., Qureshi, K., Sabzoi, N., Gao, S., and Yu, G., Chem. Papers, 2019, vol. 73, pp. 2757–2765. https://doi.org/10.1007/s11696-019-00828-4

    Article  CAS  Google Scholar 

  117. Hosseinpour, M., Soltani, M., Noofeli, A., and Nathwani, J., Fuel, 2020, vol. 271, ID 117618. https://doi.org/10.1016/j.fuel.2020.117618

    Article  CAS  Google Scholar 

  118. Patwardhan, P.R., Timko, M.T., Class, C.A., Bonomi, R.E., Kida, Y., Hernandez, H.H., Tester, J.W., and Green, W.H., Energy Fuels, 2013, vol. 27, pp. 6108−6117. https://doi.org/10.1021/ef401150w

    Article  CAS  Google Scholar 

  119. Ates, A., Azimi, G., Choi, K.-H., Green, W.H., and Timko, M.T., Appl. Catal. B, 2014, vol. 147, pp. 144–155. https://doi.org/10.1016/j.apcatb.2013.08.018

    Article  CAS  Google Scholar 

  120. Yan, T., Wu, L., Wang, L., Fu, F., and Fang, T., Energy Fuels, 2020, vol. 34, pp. 2958−2968. https://doi.org/10.1021/acs.energyfuels.9b04148

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 18-03-00904). The review of published data included in Extraction with Ionic Liquids and Deep Eutectic Solvents sections was performed within the framework of the government assignment for the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, no. 0137-2019-0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Katasonova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 411–439, January, 2021 https://doi.org/10.31857/S0044461821040010

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katasonova, O.N., Savonina, E.Y. & Maryutina, T.A. Extraction Methods for Removing Sulfur and Its Compounds from Crude Oil and Petroleum Products. Russ J Appl Chem 94, 411–436 (2021). https://doi.org/10.1134/S1070427221040017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221040017

Keywords:

Navigation