Skip to main content
Log in

Spontaneous Surface Convection and Extraction (Stripping) Rate in Systems with Tributyl Phosphate and Di(2-ethylhexyl) Hydrogen Phosphate

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Extraction of rare earth elements with solutions of di(2-ethylhexyl) hydrogen phosphate or tributyl phosphate in heptane, toluene, or tetrachloromethane is accompanied by the origination and development of spontaneous surface convection. The spontaneous surface convection is manifested in the form of interfacial oscillation but can also lead to its break. The spectral composition of spontaneous surface convection in the systems with tributyl phosphate and di(2-ethylhexyl) hydrogen phosphate was studied. The motion of liquid elements is more intense in the system with heptane. The modulus of the surface motion velocity of the liquid elements in the systems with tributyl phosphate is higher than in those with di(2-ethylhexyl) hydrogen phosphate. Local oscillatory action on the interfacial layer at the resonance frequency increases the extraction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Shevchenko, E.A., Mitra, S., Ermakov, S.A., Titov, A.G., Ermakov, A.А., and Pattader, P., Chem. Eng. Sci., 2019, vol. 195, pp. 301–311. https://doi.org/10.1016/j.ces.2018.09.018

    Article  CAS  Google Scholar 

  2. Golubina, E., Kizim, N., and Alekseeva, N., Chem. Eng. Process.: Process Intens., 2018, vol. 132, no. 10, pp. 98–104. https://doi.org/10.1016/j.cep.2018.08.019

    Article  CAS  Google Scholar 

  3. Mostov, L.A., Ermakov, S.A., Ermakov, A.A., and Artamonova, N.A., Russ. J. Appl. Chem., 2011, vol. 84, no. 12, pp. 2051–2054. https://doi.org/10.1134/S1070427211120068

    Article  CAS  Google Scholar 

  4. Kaminskiî, V.A. and Dilman, V.V., Russ. J. Phys. Chem. A, 2004, vol. 78, no. 3, pp. 467–471.

    Google Scholar 

  5. Tarasov, V.V., Kovalenko, N.F., Shcherbakova, G.S., and Zhang, D., Theor. Found. Chem. Eng., 2006, vol. 40, no. 2, pp. 111–115. https://doi.org/10.1134/S0040579506020023

    Article  CAS  Google Scholar 

  6. Kоvalchuk, N.M. and Vollhardt, D., ColloidsSurf. A: Physicochem. Eng. Asp., 2006, vol. 291, nos. 1–3, pp. 101–109. https://doi.org/10.1021/jp054452f

    Article  CAS  Google Scholar 

  7. Li, D., Chen, M., Zhao, S., and Zeng, A., Chem. Eng. Res. Des., 2018, vol. 134, pp. 359–369. https://doi.org/10.1016/j.cherd.2018.04.011

    Article  CAS  Google Scholar 

  8. Dupal, A.Ya., Tarasov, V.V., Yagodin, G.A., and Arutyunyan, V.A., Kolloidn. Zh., 1988, vol. 50, no. 2, pp. 355–358.

    CAS  Google Scholar 

  9. Kizim, N.F. and Golubina, E.N., Russ. J. Phys. Chem. A, 2009, vol. 83, no. 7, pp. 1230–1235. https://doi.org/10.1134/S0036024409070334

    Article  CAS  Google Scholar 

  10. You, Xue-Yi, Zhang, Le-Dao, and Zheng, Jing-Ru, J. Taiwan Inst. Chem. Eng., 2014, vol. 45, pp. 772–779. https://doi.org/10.1016/j.jtice.2013.08.007

    Article  CAS  Google Scholar 

  11. McDowell, W.J., Perdue, P.Т., and Case, G.N., J. Inorg. Nucl. Chem., 1976, vol. 38, pp. 2127–2129. https://doi.org/10.1016/0022-1902(76)80486-1

    Article  CAS  Google Scholar 

  12. Kizim, N.F. and Golubina, E.N., Russ. J. Phys. Chem. A, 2003, vol. 77, no. 12, pp. 2064–2067.

    Google Scholar 

  13. Kizim, N.F. and Golubina, E.N., Russ. J. Appl. Chem., 2013, vol. 86, no. 5, pp. 680–686. https://doi.org/10.1134/S1070427213050121

    Article  CAS  Google Scholar 

  14. Vandegrift, G.F. and Horwitz, E.P., J. Inorg. Nucl. Chem., 1977, vol. 39, no. 8, pp. 1425–1428. https://doi.org/10.1016/0022-1902(77)80310-2

    Article  CAS  Google Scholar 

  15. Gajda, B. and Bogacki, M.B., Physicochem. Probl. Miner. Process., 2007, vol. 41, no. 1, pp. 145–152.

    CAS  Google Scholar 

  16. Walmsley, J.A., J. Phys. Chem., 1984, vol. 88, pp. 1226–1231. https://doi.org/10.1021/j150650a04

    Article  CAS  Google Scholar 

  17. Osipov, O.A., Minkin, V.I., and Garnovskii, A.D., Spravochnik po dipol’nym momentam (Handbook of Dipole Moments), Moscow: Vysshaya Shkola, 1971.

    Google Scholar 

  18. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Gos. Izd. Fiziko-Khimicheskoi Literatury, 1959, p. 595

    Google Scholar 

  19. Golubina, E.N., Kizim, N.F., and Chekmarev, A.M., Dokl. Phys. Chem., 2013, vol. 449, part 2, pp. 71–74. https://doi.org/10.1134/S0012501613040052

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-03-00194) and Tula oblast government (grant DS/160 of November 27, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Golubina.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kizim, N.F., Golubina, E.N. Spontaneous Surface Convection and Extraction (Stripping) Rate in Systems with Tributyl Phosphate and Di(2-ethylhexyl) Hydrogen Phosphate. Russ J Appl Chem 93, 1042–1048 (2020). https://doi.org/10.1134/S1070427220070149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220070149

Keywords:

Navigation