Skip to main content
Log in

Alkylation of Toluene with tert-Butyl Alcohol over Different Zeolites with the Same Si/Al Ratio

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Three zeolites (Beta, Mordenite and ZSM-5), which present different pore channels but the same Si/Al ratio (25), were used as catalysts to investigate the effects of acidity and channel structure on the catalytic activity for toluene butylation at 180°C in an automated high-pressure stainless steel reactor. The same Si/Al ratio of the three zeolites did not result in a similar catalytic activity, since both acidity and channel structures of zeolites can affect catalytic activity. Zeolite Beta possessing a 3D 12-ring channel system, the smallest crystal size and larger amount of B acid sites exhibited the highest toluene conversion (54.0%). Mordenite, with 32.7% toluene conversion, presented higher para-selectivity than Beta, which can be explained by the shape-selective catalysis. ZSM-5 with the largest amount of B acid sites showed the lowest catalytic activity, since alkylation can occur only on the surface active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Scheme 1.

Similar content being viewed by others

REFERENCES

  1. Jiang, T.S., Fang, M.L., Li, Y.Y., Zhao, Q., and Dai, L.M., J. Taiwan Inst. Chem. E., 2017, vol. 80, p. 1031. https://doi.org/10.1016/j.jtice.2017.09.029

    Article  CAS  Google Scholar 

  2. Yin, Q., Shen, T.T., Ma, J.Q., Yan, J., Xu, J., and Tian, X.M., Catal. Lett., 2017, vol. 147, p. 1214. https://doi.org/10.1007/s10562-017-2018-4

    Article  CAS  Google Scholar 

  3. Lee, H., Lee, S., Ryoo, R., and Choi, M., J. Catal., 2019, vol. 373, p. 25. https://doi.org/10.1016/j.jcat.2019.03.027

    Article  CAS  Google Scholar 

  4. Selvaraj, M., Jeon, S.H., Han, J., Sinha, P.K., and Lee, T.G., Appl. Catal. A-Gen., 2005, vol. 286, p. 44. https://doi.org/10.1016/j.apcata.2005.02.027

    Article  CAS  Google Scholar 

  5. Dong, H.J. and Shi, L., Ind. Eng. Chem. Res., 2010, vol. 49, p. 2091. https://doi.org/10.1021/ie901080t

    Article  CAS  Google Scholar 

  6. Pai, S.M., Gupta, U., and Chilukuri, S. J. Mol. Catal. A-Chem., 2007, vol. 265, p. 109. https://doi.org/10.1016/j.molcata.2006.09.046

    Article  CAS  Google Scholar 

  7. Sebastian, C.P., Pai, S.M., Sharanappa, N., and Satyanarayana, C.V., J. Mol. Catal. A-Chem., 2004, vol. 223, p. 305. https://doi.org/10.1016/j.molcata.2004.02.032

    Article  CAS  Google Scholar 

  8. Kostrab, G., Mravec, D., Bajus, M., Janotka, I., Sugi, Y., Cho, S.J., and Kim, J.H., Appl. Catal. A-Gen., 2006, vol. 299, p. 122. https://doi.org/10.1016/j.apcata.2005.10.014

    Article  CAS  Google Scholar 

  9. Selvaraj, M. and Lee, T.G., Micropor. Mesopor. Mat., 2005, vol. 85, p. 59. https://doi.org/10.1016/j.micromeso.2005.05.042

    Article  CAS  Google Scholar 

  10. Zhou, Z., Mao, W., Qin, J., Han, T., Han, C., and Wu, W., J. Mol. Catal. A-Chem., 2015, vol. 408, p. 132. https://doi.org/10.1016/j.micromeso.2017.12.021

    Article  CAS  Google Scholar 

  11. Le, S.D., Nishimura, S., and Ebitani, K., Catal. Commun., 2019, vol. 122, p. 20. https://doi.org/10.1016/j.catcom.2019.01.006

    Article  CAS  Google Scholar 

  12. Naranov, E.R., Sadovnikov, A.A., Maximov, A.L., and Karakhanov, E.A., Micropor. Mesopor. Mat., 2018, vol. 263, p. 150 https://doi.org/10.1016/j.micromeso.2017.12.021

    Article  CAS  Google Scholar 

  13. Portilla, M.T., Llopis, F.J., Martinez, C., Valencia, S., and Corma, A., Appl. Catal. A-gen., 2011, vol. 393, p. 257. https://doi.org/10.1016/j.apcata.2010.12.009

    Article  CAS  Google Scholar 

  14. Naranov, E.R., Sadovnikov, A.A., Vatsouro, I.M., and Maximov, A.L., Inorg. Chem. Front., 2020, vol. 7, p. 1400. https://doi.org/10.1039/D0QI00012D

    Article  CAS  Google Scholar 

  15. Xu, T., Liu, H.K., Zhao, Q.Y., Cen, S.Y., Du, L F., and Tang, Q H., Catal. Commun., 2019, vol.119, p. 96. https://doi.org/10.1016/j.catcom.2018.10.029

    Article  CAS  Google Scholar 

  16. Wang, Y.Y., Song, H., and Sun, X.L., RSC Adv., 2016, vol. 6, p. 107239. https://doi.org/10.1039/C6RA21054F

    Article  CAS  Google Scholar 

  17. Min, H.K., Cha, S.H., and Hong, S.B., ACS Catal., 2012, vol. 2, p. 971. https://doi.org/10.1021/cs300127w

    Article  CAS  Google Scholar 

  18. Sugi, Y. and Vinu, A., Catal. Surv. Asia, 2015, vol. 19, p. 188. https://doi.org/10.1007/s10563-015-9193-3

    Article  CAS  Google Scholar 

  19. Portilla, M.T., Llopis, F.J., Martinez, C., Valencia, S., and Corma, A., Appl. Catal. A-Gen., 2011, vol. 393, p. 257. https://doi.org/10.1016/j.apcata.2010.12.009

    Article  CAS  Google Scholar 

  20. Le, H. V., Parishan, S., Sagaltchik, A., Gobel, C., Schlesiger, C., Malzer, W., Trunschke, A., Schomacker, R., and Thomas, A., ACS Catal., 2017, vol. 7, p. 1403. https://doi.org/10.1021/acscatal.6b02372

    Article  CAS  Google Scholar 

  21. Mullen, C.A., Dorado, C., and Boateng, A.A., J. Anal. Appl. Pyrol., 2018, vol. 129, p. 195. https://doi.org/10.1016/j.jaap.2017.11.012

    Article  CAS  Google Scholar 

  22. Vieira, S. S., Magriotis, Z. M., Ribeiro, M. F., Graca, I., Fernandes, A., Lopes, J.M., Coelho, S.M., Santos, N.A., and Saczk, A. A., Micropor. Mesopor. Mat., 2015, vol. 201, p. 160. https://doi.org/10.1016/j.micromeso.2014.09.015

    Article  CAS  Google Scholar 

  23. Kasian, N., Verheyen, E., Vanbutsele, G., Houthoofd, K., Koranyi, T.I., Martens, J.A., and Kirschhock, C.E., Micropor. Mesopor. Mat., 2013, vol. 166, p. 153. https://doi.org/10.1016/j.micromeso.2012.07.017

    Article  CAS  Google Scholar 

  24. Ali, S.A. and Ogunronbi, K.E., Chem. Eng. Res. Des., 2013, vol. 91, p. 2601. https://doi.org/10.1016/j.cherd.2013.04.014

    Article  CAS  Google Scholar 

  25. Mravec, D., Zavadan, P., Kaszonyi, A., Joffre, J., and Moreau, P., Appl. Catal. A-gen., 2004, vol. 257, p. 49. https://doi.org/10.1016/S0926-860X(03)00633-1

    Article  CAS  Google Scholar 

  26. Nie, X., Janik, M. J., Guo, X., Liu, X., and Song, C., Catal. Today, 2011, vol. 165, p. 120. https://doi.org/10.1016/j.cattod.2010.11.070

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are also grateful for the measurement assistants from Analysis & Testing Center of Northeast Petroleum University.

Funding

This work was supported by the Natural Science Foundation of Heilongjiang Province of China (QC2017005), the Youth Fund of Northeast Petroleum University (2018QNL-26), the Fund of Characteristic & Preponderant Discipline of Chemical Engineering &Technology of Northeast Petroleum University (15041260273), the Fund of Scientific Research Foundation for the Introduction of Talent of Northeast Petroleum University (1305021821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Wang.

Ethics declarations

The authors declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Song, H., Han, Y. et al. Alkylation of Toluene with tert-Butyl Alcohol over Different Zeolites with the Same Si/Al Ratio. Russ J Appl Chem 93, 991–997 (2020). https://doi.org/10.1134/S1070427220070071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220070071

Keywords:

Navigation