Skip to main content
Log in

Methane Pyrolysis for Hydrogen Production: Specific Features of Using Molten Metals

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Published data on noncatalytic pyrolysis of natural gas in molten metals are analyzed. The most illustrative results obtained in the past two decades are described. The use of molten metals as reaction medium allows solving the problem of coking of pyrolysis reactors owing to the flotation of the carbon formed to the molten metal surface. The use of liquid metal bubbling reactors allowing the process to be performed at temperatures of up to 1200°С is considered. The maximal conversion was 78% at 1175°С and feeding rate of 50 mL min–1. The major factors favoring more complete conversion of natural gas in the processes under consideration are elevated temperature, decreased gas bubble size due to the use of bubbling systems of various types, and longer residence time of the gas in the heat carrier due to an increase in the reactor length or to use of various types of packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Muradov, N., Int. J. Hydrogen Energy, 2017, vol. 42, no. 20, pp. 14058–14088. https://doi.org/10.1016/j.ijhydene.2017.04.101

    Article  CAS  Google Scholar 

  2. Catalan, L.J.J. and Rezaei, E., Int. J. Hydrogen Energy, 2020, vol. 45, no. 4, pp. 2486–2503. https://doi.org/10.1016/j.ijhydene.2019.11.143

    Article  CAS  Google Scholar 

  3. Mitrova, T., Mel’nikov, Yu., Chugunov, D., and Glagoleva, A., Vodorodnaya ekonomika – put’ to nizkouglerodnomu razvitiyu (Hydrogen Economy—A Way to Low-Carbon Development), Moscow: Skolkovo, 2019.

    Google Scholar 

  4. Muradov, N.Z. and Veziroǧlu, T.N., Int. J. Hydrogen Energy, 2005, vol. 30, no. 3, pp. 225–237. https://doi.org/10.1016/j.ijhydene.2004.03.033

    Article  CAS  Google Scholar 

  5. Halloran, J.W., Int. J. Hydrogen Energy, 2008, vol. 33, no. 9, pp. 2218–2224. https://doi.org/10.1016/j.ijhydene.2008.02.074

    Article  CAS  Google Scholar 

  6. Muradov, N.Z., Int. J. Hydrogen Energy, 1993, vol. 18, no. 3, pp. 211–215. https://doi.org/10.1016/0360-3199(93)90021-2

    Article  Google Scholar 

  7. Trottier, D., Flynn, M.R., Kostiuk, L., and Secanell, M., Int. J. Hydrogen Energy, 2017, vol. 42, no. 40, pp. 25166–25184. https://doi.org/10.1016/j.ijhydene.2017.08.134

    Article  CAS  Google Scholar 

  8. Amin, A.M., Croiset, E., Amin, A.M., and Epling, W., Int. J. Hydrogen Energy, 2011, vol. 36, no. 4, pp. 2904–2935. https://doi.org/10.1016/j.ijhydene.2010.11.035

    Article  CAS  Google Scholar 

  9. Abbas, H.F. and Wan Daud, W.M.A., Int. J. Hydrogen Energy, 2010, vol. 35, no. 3, pp. 1160–1190. https://doi.org/10.1016/j.ijhydene.2009.11.036

    Article  CAS  Google Scholar 

  10. Yan, W. and Hoekman, S.K., Environ. Prog. Sustain. Energy, 2014, vol. 33, no. 1, pp. 213–219. https://doi.org/10.1002/ep.11746

    Article  CAS  Google Scholar 

  11. Abánades, A., Ruiz, E., Ferruelo, E.M., Hernández, F., Cabanillas, A., Martínez-Val, J.M., Rubio, J.A., López, C., Gavela, R., Barrera, G., Rubbia, C., Salmieri, D., Rodilla, E., and Gutiérrez, D., Int. J. Hydrogen Energy, 2011, vol. 36, no. 20, pp. 12877–12886. https://doi.org/10.1016/j.ijhydene.2011.07.081

    Article  CAS  Google Scholar 

  12. Patent US 1803221 A, Publ. 1931

  13. Steinberg, M., Energy Convers. Manag., 1996, vol. 37, no. 6, pp. 843–848. https://doi.org/10.1016/0196-8904(95)00266-9

    Article  CAS  Google Scholar 

  14. Steinberg, M., Int. J. Hydrogen Energy, 1999, vol. 24, no. 8, pp. 771–777. https://doi.org/10.1016/S0360-3199(98)00128-1

    Article  CAS  Google Scholar 

  15. Senchenko, V.N. and Belikov, R.S., J. Phys.: Conf. Ser., 2017, vol. 891, p. 12338. https://doi.org/10.1088/1742-6596/891/1/01233

    Article  Google Scholar 

  16. Assael, M.J., Kalyva, A.E., Antoniadis, K.D., Michael Banish, R., Egry, I., Wu, J., Kaschnitz, E., and Wakeham, W.A., J. Phys. Chem. Ref. Data, 2010, vol. 39, no. 3, p. 33105. https://doi.org/10.1063/1.3467496

    Article  CAS  Google Scholar 

  17. Abánades, A., Mehravaran, K., Rathnam, R.K., Rubbia, C., Salmieri, D., Stoppel, L., Stückrad, S., and Wetzel, Th., Int. J. Hydrogen Energy, 2015, vol. 40, no. 25, pp. 8020–8033. https://doi.org/10.1016/j.ijhydene.2015.04.062

    Article  CAS  Google Scholar 

  18. Domínguez, A., Fidalgo, B., Fernández, Y., Pis, J.J., and Menéndez, J.A., Int. J. Hydrogen Energy, 2007, vol. 32, no. 18, pp. 4792–4799. https://doi.org/10.1016/j.ijhydene.2007.07.041

    Article  CAS  Google Scholar 

  19. Fidalgo, B., Fernández, Y., Domínguez, A., Pis, J.J., and Menéndez, J.A., J. Anal. Appl. Pyrol., 2008, vol. 82, no. 1, pp. 158–162. https://doi.org/10.1016/j.jaap.2008.03.004

    Article  CAS  Google Scholar 

  20. Chen, W.-H., Liou, H.-J., and Hung, Ch.-I., Int. J. Hydrogen Energy, 2013, vol. 38, no. 30, pp. 13260–13271. https://doi.org/10.1016/j.ijhydene.2013.07.107

    Article  CAS  Google Scholar 

  21. Fulcheri, L. and Schwob, Y., Int. J. Hydrogen Energy, 1995, vol. 20, no. 3, pp. 197–202. https://doi.org/10.1016/0360-3199(94)E0022-Q

    Article  CAS  Google Scholar 

  22. Fulcheri, L., Probst, N., Flamant, G., Fabry, F., Grivei, E., and Bourrat, X., Carbon, 2002, vol. 40, no. 2, pp. 169–176. https://doi.org/10.1016/S0008-6223(01)00169-5

    Article  CAS  Google Scholar 

  23. Muradov, N., Smith, F., Bockerman, G., and Scammon, K., Appl. Catal. A, 2009, vol. 365, no. 2, pp. 292–300. https://doi.org/10.1016/j.apcata.2009.06.031

    Article  CAS  Google Scholar 

  24. Tsai, C.-H. and Chen, K.-T., Int. J. Hydrogen Energy, 2009, vol. 34, no. 2, pp. 833–838. https://doi.org/10.1016/j.ijhydene.2008.10.061

    Article  CAS  Google Scholar 

  25. Dors, M., Nowakowska, H., Jasiński, M., and Mizeraczyk, J., Plasma Chem. Plasma Process., 2014, vol. 34, no. 2, pp. 313–326. https://doi.org/10.1007/s11090-013-9510-4

    Article  CAS  Google Scholar 

  26. Patent US 5767165 A, Publ. 1998

  27. Rodat, S., Abanades, S., Coulié, J., and Flamant, G., Chem. Eng. J., 2009, vol. 146, no. 1, pp. 120–127. https://doi.org/10.1016/j.cej.2008.09.008

    Article  CAS  Google Scholar 

  28. Serban, M., Lewis, M.A., Marshall, C.L., and Doctor, R.D., Energy Fuels, 2003, vol. 17, no. 3, pp. 705–713. https://doi.org/10.1021/ef020271q

    Article  CAS  Google Scholar 

  29. Geißler, T., Plevan, M., Abánades, A., Heinzel, A., Mehravaran, K., Rathnam, R.K., Rubbia, C., Salmieri, D., Stoppel, L., Stückrad, S., Weisenburger, A.б Wenninger, H., and Wetzel, Th., Int. J. Hydrogen Energy, 2015, vol. 40, no. 41, pp. 14134–14146. https://doi.org/10.1016/j.ijhydene.2015.08.102

    Article  CAS  Google Scholar 

  30. Geißler, T., Abánades, A., Heinzel, A., Mehravaran, K., Müller, G., Rathnam, R.K., Rubbia, C., Salmieri, D., Stoppel, L., Stückrad, S., Weisenburger, A., Wenninger, H., and Wetzel, Th., Chem. Eng. J., 2016, vol. 299, pp. 192–200. https://doi.org/10.1016/j.cej.2016.04.066

    Article  CAS  Google Scholar 

  31. Upham, D.C., Agarwal, V., Khechfe, A., Snodgrass, Z.R., Gordon, M.J., Metiu, H., and McFarland, E.W., Science, 2017, vol. 358, no. 6365, p. 917. https://doi.org/10.1126/science.aao5023

    Article  CAS  PubMed  Google Scholar 

  32. Kozlov, G.I. and Knorre, V.G., Combust. Flame, 1962, vol. 6, pp. 253–263. https://doi.org/10.1016/0010-2180(62)90103-7

    Article  CAS  Google Scholar 

  33. Kevorkian, V., Heath, C.E., and Boudart, M., J. Phys. Chem., 1960, vol. 64, no. 8, pp. 964–968. https://doi.org/10.1021/j100837a002

    Article  CAS  Google Scholar 

  34. Chen, C.J., Back, M.H., and Back, R.A., Can. J. Chem., 1975, vol. 53, no. 23, pp. 3580–3590.

    Article  CAS  Google Scholar 

  35. Martynov, P.N., Gulevich, A.V., Orlov, Yu.I., and Gulevsky, V.A., Prog. Nucl. Energy, 2005, vol. 47, no. 1, pp. 604–615. https://doi.org/10.1016/j.pnucene.2005.05.063

    Article  CAS  Google Scholar 

  36. Gulevich, A.V., Martynov, P.N., Gulevsky, V.A., and Ulyanov, V.V., Energy Conv. Manag., 2008, vol. 49, no. 7, pp. 1946–1950. https://doi.org/10.1016/j.enconman.2007.12.028

    Article  CAS  Google Scholar 

  37. Paxman, D., Trottier, S., Nikoo, M., Secanell, M., and Ordorica-Garcia, G., Energy Procedia, 2014, vol. 49, pp. 2027–2036. https://doi.org/10.1016/j.egypro.2014.03.215

    Article  CAS  Google Scholar 

  38. Schultz, I. and Agar, D.W., Int. J. Hydrogen Energy, 2015, vol. 40, no. 35, pp. 11422–11427. https://doi.org/10.1016/j.ijhydene.2015.03.126

    Article  CAS  Google Scholar 

  39. Wang, K., Li, W.S., and Zhou, X.P., J. Mol., 2008, vol. 283, no. 1, pp. 153–157. https://doi.org/10.1016/j.molcata.2007.12.018

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of agreement no. 05.607.21.0311 оf December 2, 2019, unique agreement identifier RFMEFI60719X0311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Parfenov.

Ethics declarations

A.L. Maksimov is the Editor-in-Chief of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry. The other authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parfenov, V.E., Nikitchenko, N.V., Pimenov, A.A. et al. Methane Pyrolysis for Hydrogen Production: Specific Features of Using Molten Metals. Russ J Appl Chem 93, 625–632 (2020). https://doi.org/10.1134/S1070427220050018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220050018

Keywords:

Navigation