Skip to main content
Log in

Rheological, Structural, and Strength Characteristics of Cold-Cured Polyurethane Synthesized in the Presence of the Complex of Tributyl Phosphate with Zinc Dichloride

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The possibility of using [(C4H9O)3P=O]2ZnCl2 as a catalyst for preparing cold-cured polyurethane from a mixture of hydroxyl-containing oligomers and polyisocyanate was examined. The kinetic characteristics of curing were studied by viscometry, and the physicomechanical characteristics of compounds synthesized in the presence of [(C4H9O)3P=O]2ZnCl2 were determined. The influence of the curing rate on the structure of hydrogen bonds in the polymer matrix and on the glass transition point of the polyurethane was analyzed using Raman spectroscopy and differential scanning calorimetry. The results obtained show that curing of polyurethane in the presence of [(C4H9O)3P=O]2ZnCl2 occurs at a high rate and leads to the formation of stronger intermolecular hydrogen bonds, which is accompanied by an increase in the strength characteristics and in the glass transition point of the ready material. The suggested mechanism of the formation of the regular three-dimensionally cross-linked structure of the multicomponent polyurethane and the revealed relationships between the rheokinetic parameters of the cold curing and the physicomechanical properties of the material synthesized in the presence of [(C4H9O)3P=O]2ZnCl2 have no analogs among the known polyurethane composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volkova, E.R., Tereshatov, V.V., and Vnutskikh, Zh.A., Russ. J. Appl. Chem., 2010, vol. 83, no. 8, pp. 1372–1379. https://doi.org/10.1134/S1070427210080082

    Article  CAS  Google Scholar 

  2. Volkova, E.R., Tereshatov, V.V., and Karmanov, V.I., Russ. J. Appl. Chem., 2011, vol. 84, no. 8, pp. 1414–1417. https://doi.org/10.1134/S1070427211080209

    Article  CAS  Google Scholar 

  3. Kaminsky, W., Metalorganic Catalysts for Synthesis and Polymerization, Berlin: Springer, 1999, pp. 105–651.

    Book  Google Scholar 

  4. Il’ichev, I.S., Moskalev, M.V., Matveeva, O.A., Grishin, D.F., Kornev, A.N., and Sushchev, V.V., Polym. Sci., Ser. B, 2011, vol. 53, nos. 3–4, pp. 101–107. https://doi.org/10.1134/S1560090411030031

    Article  CAS  Google Scholar 

  5. Rishina, L.A., Galashina, N.M., Gagieva, S.C., Tuskaev, V.A., and Kissin, Y.V., Polym. Sci., Ser. B, 2011, vol. 53, nos. 1–2, pp. 42–51. https://doi.org/10.1134/S1560090411020072

    Article  CAS  Google Scholar 

  6. Kim, I., Ahn, J.-T., Ha, Ch.S., Yang, Ch.S., and Park, I., Polymer, 2003, vol. 44, pp. 3417–3428. https://doi.org/10.1016/S0032-3861(03)00226-X

    Article  CAS  Google Scholar 

  7. Cakic, S., Lacnjevac, C., Nikolic, G., Stamenkovic, J., Rajkovic, M.B., Gligoric, M., and Barac, M., Sensors, 2006, vol. 6, no. 11, pp. 1708–1720. https://doi.org/10.3390/s6111708

    Article  CAS  Google Scholar 

  8. Bantu, B., Pawar, G.M., Wurst, K., Decker, Ul., Schmidt, A.M., and Buchmeiser, M.R., Eur. J. Inorg. Chem., 2009, vol. 15, no. 13, pp. 3103–3109. https://doi.org/10.1002/chem.200802670

    CAS  Google Scholar 

  9. Lima, V., Pelissoli, N., Dullius, J., Ligabue, R., and Einloft, S., J. Appl. Polym. Sci., 2010, vol. 115, no. 3, pp. 1797–1802. https://doi.org/10.1002/app.31298

    Article  CAS  Google Scholar 

  10. Volkova, E.R., Karmanov, V.I., and Tereshatov, V.V., J. Appl. Spectrosc., 2013, vol. 80, no. 4, pp. 505–509. https://doi.org/10.1007/s10812-013-9796-2

    Article  CAS  Google Scholar 

  11. Saunders, J.H. and Frisch, K.C., Polyurethanes: Chemistry and Technology, Part I: Chemistry, New York: Wiley, 1962.

    Google Scholar 

  12. Irzhak, V.I., Arkhitektura polimerov (Polymer Architecture), Moscow: Nauka, 2012 pp. 300–340.

    Google Scholar 

  13. Novakov, I.A., Chalykh, A.E., Nistratov, A.V., Reznikova, O.A., Matveev, V.V., Budylin, N.Y., and Pyl’nov, D.V., Polym. Sci., Ser. B, 2012, vol. 54, nos. 3–4, pp. 240–246. https://doi.org/10.1134/S1560090412040045

    Article  CAS  Google Scholar 

  14. Onuchin, D.V., Brigadnov, K.A., Gorbunova, I.Y., Sirotin, I.S., Bilichenko, Yu.V., Filatov, S.N., Kerber, M.L., Kravchenko, T.P., and Kireev, V.V., Polym. Sci., Ser. B, 2015, vol. 57, no. 5, pp. 402–407. https://doi.org/10.1134/S1560090415050103

    Article  CAS  Google Scholar 

  15. Irzhak, VI. and Mezhikovskii, S.M., Khimicheskaya fizika otverzhdeniya oligomerov: monografiya (Chemical Physics of Oligomer Curing: Monograph), Moscow: Yurait, 2019 pp. 133–178.

    Google Scholar 

  16. Novakov, I.A., Pyl’nov, D.V., Vaniev, M.A., Medvedev, V.P., Petrosyan, E.V., Korchagina, E.A., and Nistratov, A.V., Russ. J. Appl. Chem., 2013, vol. 86, no. 7, pp. 1056–1063. https://doi.org/10.1134/S1070427213070185

    Article  CAS  Google Scholar 

  17. Malkin, A.Ya. and Kulichikhin, S.G., Reologiya v protsessakh obrazovaniya i prevrashcheniya polimerov (Rheology in Formation and Transformations of Polymer), Moscow: Khimiya, 1985 pp. 136–152.

    Google Scholar 

  18. Arinina, M.P., Il’in, S.O., Malkin, A.Y., Kostenko, V.A., and Gorbunova, I.Y., Polym. Sci., Ser. A, 2018, vol. 60, no. 5, pp. 683–690. https://doi.org/10.1134/S0965545X18050012

    Article  CAS  Google Scholar 

  19. Malkin, A.Ya., Kulichikhin, S.G., Kerber, M.L., Gorbunova, I.Yu., and Murachova, E.A., Polym. Eng. Sci., 1997, vol. 37, no. 8, pp. 1322–1330. https://doi.org/10.1002/pen.11778

    Article  CAS  Google Scholar 

  20. Lyubartovich, S.A., Morozov, Yu.L., and Tret’yakov, O.B., Reaktsionnoe formovanie poliuretanov (Reactive Forming of Polyurethanes), Moscow: Khimiya, 1990 pp. 9–45.

    Google Scholar 

  21. De Gennes, P.-G., Scaling Concepts in Polymer Physics, London: Cornell Univ. Press, 1979.

    Google Scholar 

  22. Andreev, M., Khaliullin, R.N., Steenbakkers, R.J.F., and Schieber, J.D., J. Rheol., 2013, vol. 57, no. 2, pp. 535–557. https://doi.org/10.1122/1.4788909

    Article  CAS  Google Scholar 

  23. Mead, D.W., Banerjee, N., and Park, J., J. Rheol., 2015, vol. 59, no. 2, pp. 335–363. https://doi.org/10.1122/1.4905921

    Article  CAS  Google Scholar 

  24. Romanova, V., Begichev, V., Karmanov, V., Kondyurin, A., and Maitz, M.F. J. Raman Spectrosc., 2002, vol. 33, no. 10, pp. 769–777. https://doi.org/10.1002/jrs.914

    Article  CAS  Google Scholar 

  25. Volkova, E.R., Strelnikov, V.N., Borisova, I.A., Slobodinyuk, A.I., and Savchuk, A.V., Polym. Sci., Ser. D, 2018, vol. 11, no. 3, pp. 292–296. https://doi.org/10.1134/S1995421218030231

    Article  CAS  Google Scholar 

  26. Wang, Z., Zhang, T., Zhang, Z., Ge, Z., and Luo, Y., Polym. Bull., 2016, vol. 73, no. 11, pp. 3095–3104. https://doi.org/10.1007/s00289-016-1643-1

    Article  CAS  Google Scholar 

  27. Tager, A.A., Fiziko-khimiya polimerov (Physical Chemistry of Polymers), Askadskii, A.A., Ed., Moscow: Nauch. Mir, 2007 pp. 149–173.

  28. Bukhina, M.F. and Kurlyand, S.K., Low-Temperature Behaviour of Elastomers, Leiden: VSP (Brill), 2007, pp. 125–137.

    Book  Google Scholar 

  29. Bernshtein, V.A. and Egorov, V.M., Differentsial’naya skaniruyushchaya kalorimetriya v fiziko-khimii polimerov (Differential Scanning Calorimetry in Physical Chemistry of Polymers), Leningrad: Khimiya, 1990 pp. 21–72.

    Google Scholar 

  30. Kercha, Yu.Yu., Onishchenko, Z.V., Kutyanina, V.S., and Shelkovnikova, A.A., Strukturno-khimicheskaya modifikatsiya elastomerov (Structure-Chemical Modification of Elastomers), Kiev: Naukova Dumka, 1989 pp. 136–208.

    Google Scholar 

  31. Afanas’ev, E.S., Petunova, M.D., Goleneva, L.M., Askadskii, A.A., Klimova, T.P., and Babushkina, T.A., Polym. Sci., Ser. A, 2010, vol. 52, no. 12, pp. 1318–1326. https://doi.org/10.1134/S0965545X10120102

    Article  Google Scholar 

  32. Prisacariu, C., Polyurethane Elastomers. From Morphology to Mechanical Aspects, Vienna: Springer, 2011, pp. 61–203.

    Book  Google Scholar 

  33. Gooch Jan, W., Encyclopedic Dictionary of Polymers, New York: Springer, 2011, pp. 574–575.

    Book  Google Scholar 

  34. Zharkov, V.V., Strikovsky, A.G., and Verteletskaya, T.E., Polymer, 1993, vol. 34, no. 5, pp. 938–941. https://doi.org/10.1016/0032-3861(93)90211-R

    Article  CAS  Google Scholar 

  35. Vatulev, V.N., Laptii, S.V., and Kercha, Yu.Yu., Infrakrasnye spektry i struktura poliuretanov (Infrared Spectra and Structure of Polyurethanes), Kiev: Naukova Dumka, 1987 pp. 21–38.

    Google Scholar 

  36. Nagle, D.J., Celina, M., Rintoul, L., and Fredericks, P.M., Polym. Degrad. Stab., 2007, vol. 92, no. 8, pp. 1446–1454. https://doi.org/10.1016/j.polymdegradstab.2007.05.010

    Article  CAS  Google Scholar 

  37. Rashmi, B.J., Rusu, D., Prashantha, K., Lacrampe, M.-F., and Krawczak, P., eXPRESS Polym. Lett., 2013, vol. 7, no. 10, pp. 852–862. https://doi.org/10.3144/expresspolymlett.2013.82

    Article  CAS  Google Scholar 

  38. Malkappa, K. and Jana, T., Ind. Eng. Chem. Res., 2013, vol. 52, no. 36, pp. 12887–12896. https://doi.org/10.1021/ie401923e

    Article  CAS  Google Scholar 

  39. Auten, K.L. and Petrovic, Z.S., J. Polym. Sci., Part B: Polym. Phys., 2002, vol. 40, no. 13, pp. 1316–1333. https://doi.org/10.1002/polb.10196

    Article  CAS  Google Scholar 

  40. Davletbaeva, I.M., Zaripov, I.I., Davletbaev, R.S., and Balabanova, F.B., Russ. J. Appl. Chem., 2014, vol. 87, no. 4, pp. 468–473. https://doi.org/10.1134/S10704272140400120

    Article  CAS  Google Scholar 

  41. Goleneva, L.M. and Askadskii, A.A., Polym. Sci., Ser. C, 2009, vol. 51, no. 1, pp. 26–34. https://doi.org/10.1134/S1811238209010068

    Article  Google Scholar 

  42. Chen, S., Wang, Q., and Wang, T., J. Polym. Res., 2012, vol. 19, no. 11, pp. 1–7. https://doi.org/10.1007/s10965-012-9994-2

    Article  CAS  Google Scholar 

  43. Saralegi, A., Rueda, L., Fernández-d’Arlas, B., Mondragon, I., Eceiza, A., and Corcuera, M.A., Polym. Int., 2013, vol. 62, no. 1, pp. 106–115. https://doi.org/10.1002/pi.4330

    Article  CAS  Google Scholar 

  44. Dutta, S. and Karak, N., Polym. Int., 2006, vol. 55, no. 1, pp. 49–56. https://doi.org/10.1002/pi.1914

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Cand. Sci. (Phys.-Math.) V.I. Karmanov, T.E. Oshchepkova, and S.S. Kulichikhina for recording the Raman spectra and DSC patterns and for performing the physicomechanical tests, respectively.

Funding

The study was financially supported by the state budget within the framework of the government assignment for the Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences (State Registry no. AAAA-A18-118022290056-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Volkova.

Ethics declarations

The author declares that she has no conflict of interest.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 12, pp. 1610–1621.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, E.R. Rheological, Structural, and Strength Characteristics of Cold-Cured Polyurethane Synthesized in the Presence of the Complex of Tributyl Phosphate with Zinc Dichloride. Russ J Appl Chem 92, 1751–1760 (2019). https://doi.org/10.1134/S1070427219120174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219120174

Keywords

Navigation