Skip to main content
Log in

Sorption of Lanthanum(III) and Neodymium(III) from Concentrated Phosphoric Acid by Strongly Acidic Cation Exchange Resin (SQS-6)

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2019

This article has been updated

Abstract

The feasibility of using a macroporous strongly acidic cation exchange resin (SQS-6) as an adsorbent for lanthanum(III) and neodymium(III) from phosphoric acid medium, >4.0 M, was administered using batch and column techniques. Different parameters affecting the sorption of these metal ions such as v/m ratio, acid concentration and the metal ion concentration were separately investigated. The results indicated that the sorption process is relatively fast, reaching equilibrium state within 10 min. Influence of temperature on the equilibrium distribution values was also studied to evaluate the changes in standard thermodynamic quantities where the results indicated that the sorption is endothermic and the process is spontaneous associated with increasing the randomness of the system. The adsorption results of the studied metal ions were found to obey Langmuir isotherm model over the entire studied concentration range. The recovery of La(III) and Nd(III) from the loaded resin was performed with 1.0 M citric acid at pH 4.0. The breakthrough capacity of La(III) and Nd(III) was found to be 33.55 and 17.30 mg/g, respectively. The experimental data resulting from column technique were followed Thomas and Yoon-Nelson models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 19 February 2020

    In the head of Table 7, column 3 row 2, Ln(III) should be replaced by Nd(III).

References

  1. Rim, K.T., Koo, K.H., and Park, J.S., Saf. Health Work, 2013, vol. 4, pp. 12–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jarvis, I., Burnett, W.C., Nathan, Y., Almbaydin, S.M.F., Attia, A.K.M., Castro, L.N., Flicoteaux, R., Hilmy, M.E., Husain, V., Qutawah, A.A., Serjani, A., and Zanin, Y.N., In Concepts and Controversies in Phosphogenesis, Eclogae Geol. Helv., 1994, vol. 87, pp. 643–700.

    Google Scholar 

  3. Gupta, C.K., and Krishna, M.N., Extractive Metallurgy of Rare–Earths, London: CRC Press, 2004.

    Google Scholar 

  4. Emsbo, P., McLaughlin, P.A., Breit, G.N., du Bray, E.A., and Koenig, A.E., Gondwana Res., 2015, vol. 27(2), pp. 776–785.

    CAS  Google Scholar 

  5. Shengxi, W., Wang, L., Zhao, L., Zhang, P., El–Shall, H., Moudgil, B., Huang, X., and Zhang, L., Chem. Eng. J., 2018, vol. 335, pp. 774–800.

    Google Scholar 

  6. Cherkasov, R.A., Garifzyanov, A.R., Bazanova, E.B., Davletshin, R.R., and Leont’eva, S.V., Russ. J. Gen. Chem., 2012, vol. 82(1), pp. 33–42.

    CAS  Google Scholar 

  7. Xie, F., Zhang, T.A., Dreisinger, D., and Doyle, F., Miner. Eng., 2014, vol. 56, pp. 10–28.

    CAS  Google Scholar 

  8. Crock, J.G., Lichte, F.E., and Wildeman, T.R., Chem. Geol., 1984, vol. 45(1-2), pp. 149–163.

    CAS  Google Scholar 

  9. Kopyrin, A.A., Afonin, M.A., Fomichev, A.A., and Bakharev, M.S., Radiochemistry, 2008, vol. 50(3), pp. 281–285.

    CAS  Google Scholar 

  10. Chitra, K.R., Gaikwad, A.G., Surender, G.D., and Damodaran, A.D., J. Membrane Sci., 1997, vol. 125, pp. 257–268.

    CAS  Google Scholar 

  11. González, C.H., Cabezas, A.J.Q., and Díaz, M.F., Talanta, 2005, vol. 68(1), pp. 47–53.

    Google Scholar 

  12. Ignatova, S.N., Maryutina, T.A., Spivakov, B.Y., and Karandashev, V.K., Fresen. J. Anal. Chem, 2001, vol. 370(8), pp. 1109–1113.

    CAS  Google Scholar 

  13. Kim, I., Kim, S., and Kim, G., Aquat. Geochem., 2010, vol. 16(04), pp. 611–620.

    CAS  Google Scholar 

  14. Zhu, Y., Itoh, A., Fujimori, E., Umemura, T., and Haraguchi, H., J. Alloy. Compd., 2006, vol. 408-412, pp. 985–988.

    CAS  Google Scholar 

  15. An, F., Gao, B., Huang, X., Zhang, Y., Li, Y., Xu, Y., Zhang, Z., Gao, J., and Chen, Z., J. React. Funct. Polym., 2013, vol. 73(1), pp. 60–65.

    CAS  Google Scholar 

  16. Li, X., and Sun, Y., Hydrometallurgy, 2007, vol. 87(1-2), pp. 63–71.

    CAS  Google Scholar 

  17. Pradip and Fuerstenau, D.W.F., Int. J. Miner. Process., 1991, vol. 32(1-2), pp. 1–22.

    CAS  Google Scholar 

  18. Chirkst, D.E., Lobacheva, O.L., and Dzhevaga, N.V., Russ. J. Appl. Chem., 2011, vol. 84(9), pp.1476–1482.

    CAS  Google Scholar 

  19. Tsuruta, T., J. Rare Earth., 2007, vol. 25(5), pp. 526–532.

    Google Scholar 

  20. Chua, H., Sci. Total Environ., 1998, vol. 214(1-3), pp. 79–85.

    CAS  Google Scholar 

  21. Beker, P., Hignett, T.P., and Palgrave, D.A., Phosphates and Phosphoric Acid, Raw Materials, Technology and Economics of Wet Process, 2nd ed., New York: Marcel Decker Inc., 1989.

    Google Scholar 

  22. 22. Word Fertilizers Trends and Outlook to 2018, Rom: Food and Agriculture Organization of the United Nations, 2015, http://www.fao.org/3/a-i4324e.pdf.

    Google Scholar 

  23. El-Didamony, H., Gado, H.S, Awwad, N.S., Fawzy, M.M., and Attallah, M.F., J. Radioanal. Nucl. Chem., 2012, vol. 291, pp. 907–914.

    CAS  PubMed  Google Scholar 

  24. Jin, H.X., Wu, F.Z., Mao, X.H., Wang, M.L., and Xie, H.Y., Rare Metals, 2017, vol. 36, pp. 840–850.

    CAS  Google Scholar 

  25. Reddy, B.R., Kumar, B.N., and Radhika, S., Solvent Extr. Ion Exc., 2009, vol. 27, pp. 695–711.

    CAS  Google Scholar 

  26. Kumar, B.N., Radhika, S., Kantam, M.L., and Reddy, B.R., J. Chem Technol. Biotechnol., 2011, vol. 86(4), pp. 562–569.

    CAS  Google Scholar 

  27. Reddy, B.R., and Kumar, J.R., Solvent Extr. Ion Exc., 2016, vol. 34, pp. 226–240.

    CAS  Google Scholar 

  28. Radhika, S., Nagaraju, V., Kumar, B.N., Kantam, M.L. and Reddy, B.R., J. Rare Earth., 2012, vol. 30, pp. 1270–1275.

    CAS  Google Scholar 

  29. Hérès, X., Blet, V., Natale, P.D., Ouaattou, A., Mazouz, H., Dhiba, D., and Cuer, F., Metals, 2018, vol. 8(9), p. 682.

    Google Scholar 

  30. Papkovaa, M.V., Kon’kovab, T.V., Samieva, D.A., and Vasilenko, S.A., Russ. J. Appl. Chem., 2018, vol. 91(3), pp. 379–383.

    Google Scholar 

  31. Kumar, B.N., Radhika, S., and Reddy, B.R. Chem. Eng. J., 2010, vol. 160, pp. 138–144.

    Google Scholar 

  32. Al-Thyabat, S. and Zhang, P., Min. Proc. Ext. Met., 2015, vol. 124, pp. 143–150.

    CAS  Google Scholar 

  33. Ismail, I., Ibrahim, M., Aly, H.F., Nomura M., and Fujii, Y., J. Chromatogr. A, 2011, vol. 1218, pp. 2923–2928.

    CAS  PubMed  Google Scholar 

  34. Marczenko, Z., Spectrophotometric Determination of Elements, New York: John Wiley, 1986.

    Google Scholar 

  35. Ahmad, A.A. and Hameed, B., J. Hazard. Mater., 2010, vol. 175, pp. 298–303.

    CAS  PubMed  Google Scholar 

  36. Kundu, S., Kavalakatt, S.S., Pal, A., Ghosh, S.K., Mandal, M., and Pal, T., Water Res., 2004, vol. 38, pp. 3780–3790.

    CAS  PubMed  Google Scholar 

  37. Uddin, Md.T., Rukanuzzaman, M.d., Khan, Md.M.R., and Islam, Md.A., J. Environ. Manage, 2009, vol. 90(11), pp. 3443–3450.

    CAS  PubMed  Google Scholar 

  38. Han, R.P., Zou, L.N., Zhao, X., Xu, Y.F., Xu, F., Li, Y.L., and Wang, Y., Chem. Eng. J., 2009, vol. 149, pp. 123–131.

    CAS  Google Scholar 

  39. El–Gammal, B., and Shady, S.A., Colloid Surf. A: Physicochem. Eng. Asp., 2006, vol. 287, pp. 132–138.

    Google Scholar 

  40. Oguz, E., and Ersoy, M., Chem. Eng. J., 2010, vol. 164, pp. 56–62.

    CAS  Google Scholar 

  41. Hamed, M.M., J. Radioanal. Nucl. Chem., 2014, vol. 302, pp. 303–313.

    CAS  Google Scholar 

  42. Rizk, S.E., and Hamed, M.M., Desalin Water Treat., 2015, vol. 56, pp. 1536–1546.

    CAS  Google Scholar 

  43. Hamed, M.M., Ahmed, I.M., and Metwally, S.S., J. Ind. Eng. Chem., 2014, vol. 20, pp. 2370–2377.

    CAS  Google Scholar 

  44. Freundlich, H., Colloid and Capillary Chemistry, London: Methuen and Co. Ltd., 1926.

    Google Scholar 

  45. Langmuir, I., J. Am. Chem. Soc., 1918, vol. 40(9), pp. 1361–1403.

    CAS  Google Scholar 

  46. Dubinin, M.M., and Radushkevich, L.V., Proc. Acad. Sci. USSR Phys. Chem. Sect., 1947, vol. 55, pp. 331–333.

    Google Scholar 

  47. Huber, H., Stoeckli, H.F., and Houriet, J.P., J. Colloid Interface Sci., 1978, vol. 67, pp. 195–203.

    CAS  Google Scholar 

  48. Thomas, H.C., J. Am. Chem. Soc., 1944, vol. 66, pp. 1664–1666.

    CAS  Google Scholar 

  49. Yoon, Y.H. and Nelson, J.H., Am. Ind. Hyg. Assoc. J., 1984, vol. 45, pp. 509–516.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. El-Nadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Elgoud, E.M., Ismail, Z.H., Ahmad, M.I. et al. Sorption of Lanthanum(III) and Neodymium(III) from Concentrated Phosphoric Acid by Strongly Acidic Cation Exchange Resin (SQS-6). Russ J Appl Chem 92, 1581–1592 (2019). https://doi.org/10.1134/S1070427219110156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219110156

Keywords

Navigation