Skip to main content
Log in

Effect of Additions of Electrochemically Oxidized Graphite on the Physicochemical and Mechanical Properties of Modified Epoxy Composites

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The possibility of directional modification of the operation properties of epoxy composites by using small additions of finely dispersed electrochemically oxidized graphite was demonstrated. The optimum content of oxidized graphite as a structuring additive is 0.1 wt % relative to the epoxy compound. It ensures an 18% increase in the bending stress, a 31% increase in the bending elastic modulus, a 31% increase in the compression strength, a 53% increase in the tensile strength, a 15% increase in the tensile elastic modulus, and a 56% increase in the impact strength. Introduction of oxidized graphite influences the sample self-heating in the course of curing, Namely, the time before the onset of self-heating increases from 104 to 146 min, and the time in which the maximal self-heating temperature is reached, from 146 to 192–195 min, with the maximal self-heating temperature remaining virtually unchanged. Introduction of oxidized graphite increases the heat resistance, softening point, and thermal conductivity coefficient of the epoxy composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pykhtin, A.A. and Simonov-Emel’yanov, I.D., Tonk. Khim. Tekhnol., 2016, vol. 11, no. 4, pp. 63–68.

    CAS  Google Scholar 

  2. Kumar, R., Kumar, K., Sahoo, P., and Bhowmik, S., Proc. Mater. Sci., 2014, no. 6, pp. 551–556.

  3. Sadygov, Sh.F., Ishchenko, N.Ya., and Agaeva, S.A., Plast. Massy, 2008, no. 3, pp. 24–26.

  4. Mostovoi, A.S., Vopr. Materialoved., 2015, no. 4 (84), pp. 117–122.

  5. Radoman, T.S., Dzunuzovic, J.V., Jeremic, K.B., Grgur, B.N., Milicevic, D.S., Popovic, I.G., and Dzunuzovic, E.S., Mater. Des., 2014, vol. 62, pp. 158–167. https://doi.org/10.1016/j.matdes.2014.05.015

    Article  CAS  Google Scholar 

  6. Osipov, P.V., Osipchik, V.S., Smotrova, S.A., and Savel’ev, D.N., Int. Polym. Sci. Technol., 2012, vol. 39, no. 8, pp. T29–T31.

    Article  Google Scholar 

  7. Maisuradze, N.V. and Abdrakhmanova, L.A., Vestn. Tekhnol. Univ., 2015, vol. 18, no. 18, pp. 179–181.

    CAS  Google Scholar 

  8. Syugaev, A.V., Maratkanova, A.N., Shakov, A.A., Nelyubov, A.V., and Lomayeva, S.F., Surf. Coat. Technol., 2013, vol. 236, pp. 429–437. https://doi.org/10.1016/j.surfcoat.2013.10.030

    Article  CAS  Google Scholar 

  9. Mochalova, E.N., Bannov, A.G., Shibaev, A.A., Vakhitova, R.N., Galikhanov, M.F., and Cherkov, A.G., Vestn. Tekhnol. Univ., 2016, vol. 19, no. 10, pp. 69–72.

    CAS  Google Scholar 

  10. Tszing Wong, Kintak Lau, Waiyin Tam, Julie A. Etches, Jang-Kyo Kim, and Ying Wu, Composites, Part B, 2016, vol. 90, pp. 378–385. https://doi.org/10.1016/j.compositesb.2016.01.005

    Article  CAS  Google Scholar 

  11. Kondratyuk, I.V., Emel’yanov, A.V., Tarov, D.V., and Shubin, I.N., Sovrem. Tend. Razv. Nauki Tekhnol., 2016, no. 5–1, pp. 18–20.

  12. Sapronov, A.A., Ben’, A.P., and Buketova, N.N., Plast. Massy, 2015, nos. 9–10, pp. 18–21.

  13. Buketov, A.V., Sapronov, A.A., Buketova, N.N., Brailo, M.V., Marushak, P.O., Panin, S.V., and Amelin, M.Yu., Compos.: Mech., Comput., Appl., 2018, vol. 9, no. 2, pp. 141–161. https://doi.org/10.1615/CompMechComputApplIntJ.v9.i2.30

    Google Scholar 

  14. Mostovoi, A.S., Nurtazina, A.S., Kadykova, Yu.A., and Bekeshev, A.Z., Perspekt. Mater., 2019, no. 2, pp. 36–43. https://doi.org/10.30791/1028-978X-2019-2-36-43

  15. Eremeeva, N.M., Chadina, V.V., Sveshnikova, E.S., and Panova, L.G., Fundam. Issled., 2015, no. 5–1, pp. 68–72.

  16. Yakovlev, A.V., Zabud’kov, S.L., Yakovleva, E.V., and Finaenov, A.I., Russ. J. Appl. Chem., 2006, vol. 79, no. 10, pp. 1600–1604. https://doi.org/10.1134/S1070427206100077

    Article  CAS  Google Scholar 

  17. Mostovoi, A.S., Yakovlev, E.A., Burmistrov, I.N., and Panova, L.G., Russ. J. Appl. Chem., 2015, vol. 88, no. 1, pp. 129–137. https://doi.org/10.1134/S107042721501019X

    Article  CAS  Google Scholar 

  18. Zaaba, N.I., Foo, K.L., Hashim, U., Tan S. J., Wei-Wen Liu, and Voon, C.H., Proc. Eng., 2017, vol. 184, pp. 469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  19. Edwards, R.S. and Coleman, K.S., Nanoscale, 2013, vol. 5, pp. 38–51. https://doi.org/10.1039/c2nr32629a

    Article  CAS  Google Scholar 

  20. Avouris, P. and Dimitrakopoulos, C., Mater. Today, 2012, vol. 15, no. 3, pp. 86–97. https://doi.org/10.1016/S1369-7021(12)70044-5

    Article  CAS  Google Scholar 

  21. Ghorbani, M., Abdizadeh, H., and Golobostanfard, M.R., Proc. Mater. Sci., 2015, vol. 11, pp. 326–330. https://doi.org/10.1016/j.mspro.2015.11.104

    Article  CAS  Google Scholar 

  22. Shirshova, E.S., Tatarintseva, E.A., Plakunova, E.V., and Panova, L.G., Plast. Massy, 2006, no. 12, pp. 34–36.

  23. Mostovoy, A.S., Kadykova, Yu.A., Bekeshev, Y.A., and Tastanova, L.K., J. Appl. Polym. Sci., 2018, vol. 135, no. 35, pp. 1–8. https://doi.org/10.1002/app.46651

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Cand. Sci. (Chem.) V.V. Krasnov, assistant professor of the Chair of Natural and Mathematical Sciences, Engels Institute of Technology, branch of the Yuri Gagarin State Technical University of Saratov, for the assistance and consulting in synthesis of electrochemically oxidized graphite.

Funding

The reported study was funded by RFBR according to the research project no. 18-29-19048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mostovoy.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 10, pp. 1352–1360.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostovoy, A.S., Yakovlev, A.V. Effect of Additions of Electrochemically Oxidized Graphite on the Physicochemical and Mechanical Properties of Modified Epoxy Composites. Russ J Appl Chem 92, 1439–1446 (2019). https://doi.org/10.1134/S1070427219100148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219100148

Keywords

Navigation