Skip to main content
Log in

A Deep Analytical Study in the Oxidation Polymerization Desulfurization Process Using a Keggin-Type Polyoxometalate Catalyst: Characterization of Solid and Liquid Products

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this study, oxidation of a model fuel, benzothiophene (BT) in n-decane, using polyoxometalate catalyst with Keggin structure has been investigated. The solid product evaluation was performed using gel permeation chromatography (GPC), thermal gravimetric analysis (TGA)/(DSC) differential scanning calorimeter, FTIR, proton and carbon nuclear magnetic resonance (1H + 13C NMR) spectrums, elementary (C, H, N and S) analyses. The results showed that the solid product was a polymer with a weighted average molecular weight (Mw) of 183030. In addition, the polymer was found to be sticky, branched and cross-linked. Moreover, for the first time, the role of the different solvents in the formation of the polymer was studied. It was revealed that the solvent intermolecular force plays an important role in polymerization so that the solvent with stronger molecular force did not participant in the polymerization. Ultimately gas chromatography-flame ionization detector (GC-FID) analysis showed the amount of desulfurization was about 81%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazyari, A., Khodadadi, A.A., Mamaghani, A.H., Beheshtian, J., Thompson, L.T., & Mortazavi, Y., Appl. Cat.B: Env., 2016, vol. 180, pp. 65–77.

    Article  CAS  Google Scholar 

  2. Raj, J.J., Magaret, S., Pranesh, M., Lethesh, K.C., Devi, W.C., and Mutalib, M.A., Sep. & Pur. Tech., 2018, vol. 196, pp. 115–123.

    Article  CAS  Google Scholar 

  3. Zhu, W., Huang, W., Li, H., Zhang, M., Jiang, W., Chen, G., and Han, C., Fuel Process. Tech., 2011, vol. 92, no. 10, pp. 1842–1848.

    Article  CAS  Google Scholar 

  4. Mandizadeh, S., Salavati-Niasari, M., and Sadri, M., Sep. & Pur. Tech., 2017, vol. 175, pp. 399–405.

    Article  CAS  Google Scholar 

  5. Budukva, S., Klimov, O., Pereyma, V.Y., and Noskov, A., Russian J. Appl. Chem., 2017, vol. 90, no. 9, pp. 1425–1432.

    Article  CAS  Google Scholar 

  6. Choi, A.E.S., Roces, S., Dugos, N., and Wan, M.-W., Sustainable Env. Res., 2016, vol. 26, no. 4, pp. 184–190.

    Article  CAS  Google Scholar 

  7. Wang, G., Han, Y., Wang, F., Chu, Y., and Chen, X., Reaction Kinetics, Mechanisms & Catalysis, 2015, vol. 115, no. 2, pp. 679–690.

    Article  CAS  Google Scholar 

  8. Rezvani, M.A., Khandan, S., and Sabahi, N., Energy & Fuels, 2017, vol. 31, no. 5, pp. 5472–5481.

    Article  CAS  Google Scholar 

  9. Zheng, H., Sun, Z., Chen, X., Zhao, Q., Wang, X., and Jiang, Z., Appl. Catalysis A: General, 2013, vol. 467, pp. 26–32.

    Article  CAS  Google Scholar 

  10. Bazyari, A., Mortazavi, Y., Khodadadi, A.A., Thompson, L.T., Tafreshi, R., Zaker, A., and Ajenifujah, O.T., Appl. Catalysis B: Env., 2016, vol. 180, pp. 312–323.

    Article  CAS  Google Scholar 

  11. Khodaei, B., Sobati, M.A., and Shahhosseini, S., Clean Tech. & Env. Policy, 2016, vol. 18, no. 8, pp. 2677–2689.

    Article  CAS  Google Scholar 

  12. Song, H., Zhu, N., Chen, B., Wang, F., Bai, M., and Wang, X., Russ. J. Appl. Chem, 2016, vol. 89, no. 12, pp. 2076–2083.

    Article  CAS  Google Scholar 

  13. Karami, E., Sobati, M.A., Khodaei, B., and Abdi, K., Appl. Thermal Eng., 2017, vol. 118, pp. 691–702.

    Article  CAS  Google Scholar 

  14. Rezvani, M.A., Shaterian, M., Akbarzadeh, F., and Khandan, S., Chem. Eng. J., 2018, vol. 333, pp. 537–544.

    Article  CAS  Google Scholar 

  15. Rahimi, M., Shahhosseini, S., and Movahedirad, S., Ultrasonics Sonochem., 2017, vol. 39, pp. 611–622.

    Article  CAS  Google Scholar 

  16. Jing Zhang, J., Yi Wang, W., Jian Wang, G., Song, H., and Wang, L., Russ. J. Appl. Chem., 2018, vol. 91, no. 9, pp. 1513–1519.

    Article  Google Scholar 

  17. Akbari, A., Omidkhah, M., and Darian, J.T., Ultrasonics Sonochem., 2015, vol. 23, pp. 231–237.

    Article  CAS  Google Scholar 

  18. Harutyunyan, R., Rezvani, M., and Heravi, M.M., Syn. & Reactivity in Inorg., Metal-Org, & Nano-Metal Chem., 2011, vol. 41, no. 1, pp. 94–99.

    CAS  Google Scholar 

  19. Rodikova, Y.A., Zhizhina, E.G., and Pai, Z.P., Reaction Kinetics, Mechanisms & Catalysis, 2018, vol. 124, no. 2, pp. 469–485.

    Article  CAS  Google Scholar 

  20. Huang, P., Liu, A., Kang, L., Dai, B., Zhu, M., and Zhang, J., Chem. Select, 2017, vol. 2, no. 14, pp. 4010–4015.

    CAS  Google Scholar 

  21. Proust, A., Matt, B., Villanneau, R., Guillemot, G., Gouzerh, P., and Izzet, G., Chem. Soc. Rev., 2012, vol. 41, no. 22, pp. 7605–7622.

    Article  CAS  PubMed  Google Scholar 

  22. Genovese, M. and Lian, K., Current Opinion in Solid State & Materials Sci., 2015, vol. 19, no. 2, pp. 126–137.

    Article  CAS  Google Scholar 

  23. Wang, S.-S. and Yang, G.-Y., Chem. Rev., 2015, vol. 115, no. 11, pp. 4893–4962.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y., Zhang, D., Zhang, J., Zhang, Y., Liu, L., Zhang, X., Feng, Y., Sha, J., Zhang, Y., and Wang, C., Inorg. Chem. Comm., 2016, vol. 74, pp. 6–11.

    Article  CAS  Google Scholar 

  25. Maerten, S.G., Voß, D., Liauw, M.A., and Albert, J., Chem. Select, 2017, vol. 2, no. 24, pp. 7296–7302.

    CAS  Google Scholar 

  26. Cao, J., Xu, C., Liu, C., and Liu, W., Chem.Select, 2016, vol. 1, no. 6, pp. 1268–1272.

    CAS  Google Scholar 

  27. Shojaei, A.F., Rezvani, A.M., and Heravi, M., J. Serbian Chem. Soc., 2011, vol. 76, no. 11, pp. 1513–1522.

    Article  CAS  Google Scholar 

  28. Rafiee, E., and Eavani, S., J. Molecular Liq., 2014, vol. 199, pp. 96–101.

    Article  CAS  Google Scholar 

  29. Mizuno, N., Kamata, K., and Yamaguchi, K., Bifunctional Molecular Catalysis, Springer, 2011, pp. 127–160.

    Book  Google Scholar 

  30. Zhu, W., Wu, P., Chao, Y., Li, H., Zou, F., Xun, S., Zhu, F., and Zhao, Z., Industrial & Eng. Chem. Res., 2013, vol. 52, no. 49, pp. 17399–17406.

    Article  CAS  Google Scholar 

  31. Mizuno, N. and Kamata, K., Coordination Chem. Rev., 2011, vol. 255, no. 19–20, pp. 2358–2370.

    Article  CAS  Google Scholar 

  32. Xiao, J., Wu, L., Wu, Y., Liu, B., Dai, L., Li, Z., Xia, Q., and Xi, H., Appl. Energy, 2014, vol. 113, pp. 78–85.

    Article  CAS  Google Scholar 

  33. Li, J., Hu, B., Tan, J., and Zhuang, J., Transition Metal Chem., 2013, vol. 38, no. 5, pp. 495–501.

    Article  CAS  Google Scholar 

  34. Yan, X.-M., Mei, P., Xiong, L., Gao, L., Yang, Q., and Gong, L., Catalysis Sci. & Technology, 2013, vol. 3, no. 8, pp. 1985–1992.

    Article  CAS  Google Scholar 

  35. Choi, A.E.S., Roces, S., Dugos, N., and Wan, M.-W., Fuel, 2016, vol. 180, pp. 127–136.

    Article  CAS  Google Scholar 

  36. Khenkin, A.M. and Neumann, R., ChemSusChem, 2011, vol. 4, no. 3, pp. 346–348.

    Article  CAS  PubMed  Google Scholar 

  37. Mothé-Esteves, P., Pereira, M.M., Arichi, J., and Louis, B., Crystal Growth & Design, 2010, vol. 10, no. 1, pp. 371–378.

    Article  CAS  Google Scholar 

  38. Arichi, J., Pereira, M.M., Esteves, P.M., and Louis, B., Solid State Sci., 2010, vol. 12, no. 11, pp. 1866–1869.

    Article  CAS  Google Scholar 

  39. Tsigdinos, G.A. and Hallada, C.J., Inorg. Chem., 1968, vol. 7, no. 3, pp. 437–441.

    Article  CAS  Google Scholar 

  40. Khenkin, A.M., Weiner, L., Wang, Y., and Neumann, R., J. Am. Chem. Soc., 2001, vol. 123, no. 35, pp. 8531–8542.

    Article  CAS  PubMed  Google Scholar 

  41. Neumann, R. and Lissel, M., J. Org. Chem., 1989, vol. 54, no. 19, pp. 4607–4610.

    Article  CAS  Google Scholar 

  42. Khenkin, A.M., Leitus, G., and Neumann, R., J. Am. Chem. Soc., 2010, vol. 132, no. 33, pp. 11446–11448.

    Article  CAS  PubMed  Google Scholar 

  43. Domb, A.J. and Langer, R., J. Polymer Sci. Part A: Polymer Chem., 1987, vol. 25, no. 12, pp. 3373–3386.

    Article  CAS  Google Scholar 

  44. Zohuriaan, M.J. and Shokrolahi, F., Polymer Testing, 2004, vol. 23, no. 5, pp. 575–579.

    Article  CAS  Google Scholar 

  45. Shortt, D.W., J. Liq. Chrom., 1993, vol. 16, no. 16, pp. 3371–3391.

    Article  CAS  Google Scholar 

  46. Atkins, P. and de Paula, J., Phys. Chem. Life Sci., OUP Oxford, 2011.

    Google Scholar 

  47. Wong, A.C.Y. and Lam, F., Polymer Testing, 2002, vol. 21, no. 6, pp. 691–696.

    Article  CAS  Google Scholar 

  48. Sperling, L.H., Introduction to Physical Polymer Sci., Wiley, 2005.

    Book  Google Scholar 

  49. Stutz, H., Illers, K.-H., and Mertes, J., J. Polymer Sci. Part B: Polymer Physics, 1990, vol. 28, no. 9, pp. 1483–1498.

    Article  CAS  Google Scholar 

  50. Nielsen, L.E., J. Macromol. Sci., Part C, 1969, vol. 3, no. 1, pp. 69–103.

    Article  CAS  Google Scholar 

  51. Kimura, H., Matsumoto, A., Sugito, H., Hasegawa, K., Ohtsuka, K., and Fukuda, A., J. Appl. Polymer Sci., 2001, vol. 79, no. 3, pp. 555–565.

    Article  CAS  Google Scholar 

  52. Akkara, J.A., Senecal, K.J., and Kaplan, D.L., J. Polymer Sci. Part A: Polymer Chem., 1991, vol. 29, no. 11, pp. 1561–1574.

    Article  CAS  Google Scholar 

  53. Maleki, A., Aghaei, M., Hafizi-Atabak, H.R., and Ferdowsi, M., Ultrasonics Sonochemistry, 2017, vol. 37, pp. 260–266.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Z., and Feng, S.-S., Biomaterials, 2006, vol. 27, no. 2, pp. 262–270.

    Article  PubMed  CAS  Google Scholar 

  55. Guo, T., Yu, L., Zhao, B., Ying, L., Wu, H., Yang, W., and Cao, Y., J. Polymer Sci. Part A: Polymer Chem., 2015, vol. 53, no. 8, pp. 1043–1051.

    Article  CAS  Google Scholar 

  56. Son, S.-K., Choi, Y.-S., Lee, W.-H., Hong, Y., Kim, J.-R., Shin, W.-S., Moon, S.-J., Hwang, D.-H., and Kang, I.-N., J. Polymer Sci. Part A: Polymer Chem., 2010, vol. 48, no. 3, pp. 635–646.

    Article  CAS  Google Scholar 

  57. Kim, E., Choi, Y.-K.and Lee, M.-H., Macromolecules, 1999, vol. 32, no. 15, pp. 4855–4860.

    Article  CAS  Google Scholar 

  58. Chen, C.-P., Chan, S.-H., Chao, T.-C., Ting, C.and Ko, B.-T., J. Am. Chem. Soc., 2008, vol. 130, no. 38, pp. 12828–12833.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Y.-X. and Ishida, H., Macromolecules, 2000, vol. 33, no. 8, pp. 2839–2847.

    Article  CAS  Google Scholar 

  60. Pavia, D.L., Lampman, G.M., Kriz, G.S., and Vyvyan, J.A., Introduction to Spectroscopy, Cengage Learning, 2008.

    Google Scholar 

  61. Heyes, D.M. and Okumura, H., J. Chem. Physics, 2006, vol. 124, no. 16, pp. 164501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrokh Shahhosseini.

Additional information

Conflict of Interest

The authors state that they have no conflict of interest to be disclosed in the present communication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansourian, S.H., Shahhosseini, S. & Maleki, A. A Deep Analytical Study in the Oxidation Polymerization Desulfurization Process Using a Keggin-Type Polyoxometalate Catalyst: Characterization of Solid and Liquid Products. Russ J Appl Chem 92, 1291–1305 (2019). https://doi.org/10.1134/S1070427219090155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219090155

Keywords

Navigation