Skip to main content
Log in

Bimetallic Sulfur Reduction Additives Based on Alumosilicate of Al-MCM-41 Type For Cracking Catalysts: Desulfurazing Activity vs. Ratio of Components in a Support

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Sulfur reduction additives have been synthesized based on an ordered mesoporous aluminosilicate of Al-MCM-41 type and alumina with a different ratio of components in a support for cracking catalysts. Supports and additives for cracking catalysts were characterized by transmission electron microscopy, FTIR spectroscopy, low-temperature nitrogen adsorption/desorption, and thermoprogrammed ammonia desorption. Catalytic tests of additives with an industrial zeolite-containing cracking catalyst were carried out, and their sulfur reduction activity was demonstrated. It was found that with an increase in the proportion of mesoporous aluminosilicate in the composition of the additive, the sulfur reduction activity rises. The use of additives reduces the amount of sulfur in the liquid cracking products of vacuum gas oil up to 27 rel % compared with the use of a catalyst without the additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siddiqui, M.B., Ahmed, S., Aitani, A.M., and Dean, C.F., Appl. Catal. A: General, 2006, vol. 303, no. 1, pp. 116–120.

    Article  CAS  Google Scholar 

  2. Corma, A., Martinez, C., Ketley, G., and Blair, G., Appl. Catal. A: General, 2001, vol. 208, nos. 1–2, pp. 135–152.

    Article  CAS  Google Scholar 

  3. Feng, R., Al-Megren, H., Li, X., Al-Kinany, M. C., Qiao, K., Liu, X., and Yan, Z., Appl. Petrochem. Res., 2014, vol. 4, no. 4, pp. 329–336.

    Article  CAS  Google Scholar 

  4. Vargas-Tah, A.A., García, R.C., Archila, L.F.P., Solis, J.R., and López, A.J.G, Catal. Today, 2005, vol. 107, pp. 713–718.

    Article  CAS  Google Scholar 

  5. Myrstad, T., Engan, H., Seljestokken, B., and Rytter, E., Appl. Catal. A: General, 1999, vol. 187, no. 2, pp. 207–212.

    Article  CAS  Google Scholar 

  6. Can, F., Travert, A., Ruaux, V., Gilson, J.P., Maugé, F., Hu, R., and Wormsbecher, R.F, J. Catal., 2007, vol. 249, no. 1, pp. 79–92.

    Article  CAS  Google Scholar 

  7. Jiménez-Morales, I., Moreno-Recio, M., Santamaría-González, J., Maireles-Torres, P., and Jiménez-López, A., Appl. Catal. B: Environmental, 2015, vol. 164, pp. 70–76.

    Article  CAS  Google Scholar 

  8. Wang, X., Chen, L., and Guo, Q., Chem. Eng. J., 2015, vol. 260, pp. 573–581.

    Article  CAS  Google Scholar 

  9. Chen, H. and Wang, Y., Ceram. Int., 2002, vol. 28, no. 5, pp. 541–547.

    Article  CAS  Google Scholar 

  10. Glotov, A.P., Levshakov, N.S., Vutolkina, A.V., and Lysenko, S.V., Petrol. Chem., 2018, vol. 58, no. 3, pp. 214–219.

    Article  CAS  Google Scholar 

  11. Karakhanov, E.A., Glotov, A.P., Nikiforova, A.G., Vutol-kina, A.V., Ivanov, A.O., Kardashev, S.V., Maksimov, A.L., and Lysenko, S.V., Fuel Process. Technol., 2016, vol. 153, pp. 50–57.

    Article  CAS  Google Scholar 

  12. Tompkins, J.T. and Mokaya, R., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 3, pp. 1902–1908.

    Article  CAS  PubMed  Google Scholar 

  13. Glotov, A.P., Levshakov, N.S., Artemova, M.I., Smirnova, E.M., Vutolkina, A.V., and Lysenko, S.V., Chem. Tech. Fuels Oil, 2018, vol. 54, no. 1, pp. 15–23.

    Article  CAS  Google Scholar 

  14. Anisimov, A.V., Lysenko, S.V., Terenina, M.V., Glotov, A.P., Levshakov, N.S., and Nikiforova, A.G., Theor. Found Chem. En., 2017, vol. 51, no. 5, pp. 825–829.

    Article  CAS  Google Scholar 

  15. Salam, M.S.A., Betiha, M.A., Shaban, S.A., Elsabagh, A.M., and El-Aal, R.M.A., Egypt. J. Petrol., 2015, vol. 24, no. 1, pp. 49–57.

    Article  Google Scholar 

  16. Karreman, M.A., Buurmans, I.L., Geus, J.W., Agron-skaia, A.V., Ruiz Martínez, J., Gerritsen, H.C., and Weckhuysen, B.M., Angew. Chem., 2012, vol. 124, no. 6, pp. 1457–1460.

    Article  Google Scholar 

  17. Sousa-Aguiar, E.F., Trigueiro, F.E., and Zotin, F.M., Z. Catal. Today, 2013, vol. 218, pp. 115–122.

    Article  CAS  Google Scholar 

  18. Corma, A., Fornés, V., and Melo, F., Appl. Catal., 1990, vol. 61, no. 1, pp. 175–185.

    Article  CAS  Google Scholar 

  19. Potapenko, O.V., Doronin, V.P., Sorokina, T.P., Talsi, V.P., and Likholobov, V.A., Appl. Catal. B: Environmental, 2012, vol. 117, pp. 177–184.

    Article  CAS  Google Scholar 

  20. Subhan, F., Liu, B.S., Zhang, Y., and Li, X.G., Fuel Process. Technol., 2012, vol. 97, pp. 71–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Glotov.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 4, pp. 523−530.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glotov, A.P., Levshakov, N.S., Vutolkina, A.V. et al. Bimetallic Sulfur Reduction Additives Based on Alumosilicate of Al-MCM-41 Type For Cracking Catalysts: Desulfurazing Activity vs. Ratio of Components in a Support. Russ J Appl Chem 92, 562–568 (2019). https://doi.org/10.1134/S107042721904013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721904013X

Keywords

Navigation