Skip to main content
Log in

Improvement of a process for preparing peracetic acid by the reaction of acetic acid with hydrogen peroxide in aqueous solutions, catalyzed by ion-exchange resins

  • Processes Using Various Catalyst Systems
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect of Amberlyst 15Dry™ cation-exchange resin on the reaction of peracetic acid formation from acetic acid and hydrogen peroxide in aqueous solution was studied. The pathways of available oxygen consumption were determined. The noncatalytic synthesis is accompanied by spontaneous decomposition of the peracid formed, which sharply decelerates on introducing Amberlyst 15Dry catalyst into the reaction mixture. Comparison of the kinetic relationships of the processes occurring in batch and flow-through reactors shows that in the latter case the process is characterized by diffusion hindrance. A kinetic model of the process with the parameters ensuring adequate mathematical description of the data obtained was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beber de Souza, J., Queiroz Valdez, F., Felipe Jeranoski, R., et al., Int. J. Photoenergy, 2015, vol. 2015, pp. 1–7.

    Article  Google Scholar 

  2. Asensio, E., Sanagustín, F., Nerín, C., et al., J. Chem., 2015, vol. 2015, pp. 1–7.

    Article  Google Scholar 

  3. Špicka, N. and Tavcer, P.F., Textile Res. J., 2015, vol. 85, no. 14, pp. 1497–1505.

    Article  Google Scholar 

  4. Tan, S.G. and Chow, W.S., Polym.–Plast. Technol. Eng., 2010, vol. 49, pp. 1581–1590.

    Article  CAS  Google Scholar 

  5. Leveneur, S., Warnå, J., Salmi, T., et al., Chem. Eng. Sci., 2009, vol. 64, pp. 4101–4114.

    Article  CAS  Google Scholar 

  6. Ebrahimi, F., Kolehmainen, E., Oinas, P., et al., Chem. Eng. J., 2011, vol. 167, pp. 713–717.

    Article  CAS  Google Scholar 

  7. Kockmann, N., Gottsponer, M., and Roberge, D.M., Chem. Eng. J., 2011, vol. 167, no. 2, pp. 718–726.

    Article  CAS  Google Scholar 

  8. Ebrahimi, F., Kolehmainen, E., and Turunen, I., Chem. Eng. J., 2012, vol. 179, pp. 312–317.

    Article  CAS  Google Scholar 

  9. Jolhe, P.D., Bhanvase, B.A., Patil, V.S., and Sonawane, S.H., Chem. Eng. J., 2015, vol. 276, pp. 91–96.

    Article  CAS  Google Scholar 

  10. Leveneur, S., Murzin, D.Y., Salmi, T., et al., Chem. Eng. J., 2009, vol. 147, no. 2, pp. 323–329.

    Article  CAS  Google Scholar 

  11. Wärnå, J., Rönnholm, M.R., Salmi, T., and Keikko, K., Chem. Eng. J., 2002, vol. 90, no. 1, pp. 209–212.

    Article  Google Scholar 

  12. Rubio, M., Ramirez-Galicia, G., and Jovany Lopez-Nava, L., J. Mol. Struct.: Theochem, 2005, vol 726, pp. 261–269.

    Article  CAS  Google Scholar 

  13. Dul’neva, L.V. and Moskvin, A.V., Russ. J. Gen. Chem., 2005, vol. 75, no. 7, pp. 1125–1130.

    Article  Google Scholar 

  14. Xuebing Zhao, Ting Zhang, Yujie Zhou, and Dehua Liu, J. Mol. Catal. A: Chemical, 2007, vol. 271, pp. 246–252.

    Article  Google Scholar 

  15. Karen, L., Nash, K., Sully, J., and Horn, A.B., Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 4933–4940.

    Article  Google Scholar 

  16. Al Natsheh, A., Nadykto, A.B., Mikkelsen, K.V., et al., J. Phys. Chem. A, 2004, vol. 108, pp. 8914–8929.

    Article  CAS  Google Scholar 

  17. Zeleznik, F.J., J. Phys. Chem. Ref. Data, 1991, vol. 20, no. 6, pp. 1157–1200.

    Article  CAS  Google Scholar 

  18. Yuan, Z., Ni, Y., and van Heiningen, A.R.P., Can. J. Chem. Eng., 1997, vol. 75, pp. 37–41.

    Article  CAS  Google Scholar 

  19. Yuan, Z., Ni, Y., and van Heiningen, A.R.P., Can. J. Chem. Eng., 1997, vol. 75, pp. 42–47.

    Article  CAS  Google Scholar 

  20. Xuebing Zhao, Keke Cheng, Junbin Hao, and Dehua Liu, J. Mol. Catal. A: Chemical, 2008, vol. 284, pp. 58–68.

    Article  Google Scholar 

  21. Dudley Sully, B. and Williams, P.L., Analyst, 1962, vol. 87, pp. 653–657.

    Article  Google Scholar 

  22. Filippis, P. de Scarsella, M., and Verdone, N., Ind. Eng. Chem. Res., 2009, vol. 48, pp. 1372–1375.

    Article  Google Scholar 

  23. Liang Pu, Yueming Sun, and Zhibing Zhang, J. Phys. Chem. A, 2010, vol. 114, no. 40, pp. 10842–10849.

    Article  Google Scholar 

  24. Musante, R.L., Grau, R.J., and Baltanas, M.A., Appl. Catal. A: General, 2000, vol. 197, pp. 165–173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sapunov.

Additional information

Original Russian Text © M.S. Voronov, V.N. Sapunov, A.A. Makarov, A.D. Kulazhskaya, E.S. Kaleeva, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 3, pp. 370−380.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronov, M.S., Sapunov, V.N., Makarov, A.A. et al. Improvement of a process for preparing peracetic acid by the reaction of acetic acid with hydrogen peroxide in aqueous solutions, catalyzed by ion-exchange resins. Russ J Appl Chem 89, 421–431 (2016). https://doi.org/10.1134/S1070427216030125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216030125

Navigation