Skip to main content
Log in

Anticancer Potential of Nature-Derived Isoquinoline Alkaloids (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Isoquinoline alkaloids, vastly found in nature and predominant in Papaveraceae, Berberidaceae, and Ranunculaceae plant families, possess fascinating chemical functionality and unique mechanism diversity. Isoquinoline alkaloids exhibit potent broad-spectrum anticancer activity through various mechanisms, inclusive of arrest cell cycle and induce apoptosis, representing a fertile source for discovery of novel anticancer therapeutic agents. The purpose of the present review article is to provide a comprehensive landscape of nature-derived isoquinoline alkaloids as potential anticancer agents including their mechanisms of action, covering articles published from 2018 to present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Kelley, K.D. and Aronowitz, P., Med. Clin. N. Am., 2022, vol. 106, p. 411. https://doi.org/10.1016/j.mcna.2021.12.006

    Article  PubMed  Google Scholar 

  2. Hulvat, M.C., Surg. Clin. N. Am., 2020, vol. 100, p. 469. https://doi.org/10.1016/j.suc.2020.01.002

    Article  PubMed  Google Scholar 

  3. Behranvand, N., Nasri, F., Emameh, R.Z., Khani, P., Hosseini, A., Garssen, J., and Falak, R., Cancer Immunol., Immunother., 2022, vol. 71, p. 507. https://doi.org/10.1007/s00262-021-03013-3

  4. Miller, K.D., Nogueira, L., Devasia, T., Mariotto, A.B., Yabroff, K.R., Jemal, A., Kramer, J., and Siegel, R.L., CA Cancer J. Clin., 2022, vol. 72, p. 409. https://doi.org/10.3322/caac.21731

    Article  PubMed  Google Scholar 

  5. Dutta, S., Mahalanobish, S., Saha, S., Ghosh, S., and Sil, P.C., Food Chem. Toxicol., 2019, vol. 128, p. 240. https://doi.org/10.1016/j.fct.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  6. Thomford, N.E., Senthebane, D.A., Rowe, A., Munro, D., Seele, P., Maroyi, A., and Dzobo, K., Int. J. Mol. Sci., 2018, vol. 19, p. e1578. https://doi.org/10.3390/ijms19061578

  7. Shang, X.F., Yang, C.J., Morris-Natschke, S.L., Li, J.C., Yin, X.D., Liu, Y.Q., Guo, X., Zhang, J.Y., and Lee, K.H., Med. Res. Rev., 2020, vol. 40, p. 2212. https://doi.org/10.1002/med.21703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Plazas, E., Avila, M.C., Muñoz, D.R., and Cuca, L.E., Pharm. Res., 2022, vol. 177, p. e106126. https://doi.org/10.1016/j.phrs.2022.106126

  9. Yun, D., Yoon, S.Y., Park, S.J., and Park, Y.J., Int. J. Mol. Sci., 2021, vol. 22, p. e1653. https://doi.org/10.3390/ijms22041653

  10. Bibak, B., Shakeri, F., Keshavarzi, Z., Mollazadeh, H., Javid, H., Jalili-Nik, M., Sathyapalan, T., Afshari, A.R., and Sahebkar, A., Curr. Med. Chem., 2022, vol. 29, p. 4507. https://doi.org/10.2174/0929867329666220224112811

    Article  CAS  PubMed  Google Scholar 

  11. Xiong, R.G., Huang, S.Y., Wu, S.X., Zhou, D.D., Yang, Z.J., Saimaiti, A., Zhao, C.N., Gan, R.Y., and Li, H.B., Molecules, 2022, vol. 27, p. e4523. https://doi.org/10.3390/molecules27144523

  12. Achi, I.T., Sarbadhikary, P., George, B.P., and Abrahamse, H., Cells, 2022, vol. 11, p. e3433. https://doi.org/10.3390/cells11213433

  13. Liu, M., Yang, Y., Kang, W., Liu, Y., Tao, X., Li, X., and Pan, Y., Eur. J. Pharm., 2022, vol. 915, p. e174680. https://doi.org/10.1016/j.ejphar.2021.174680

  14. Dian, L., Drobot, L., Horak, I., Li, J., Lu, H., Sun, Y., Wang, J., Xu, Z., and Zheng, M., Phytochem., 2022, vol. 200, p. e113217. https://doi.org/10.1016/j.phytochem.2022.113217

  15. Zhu, Y., Xie, N., Chai, Y., Nie, Y., Liu, K., Liu, Y., Yang, Y., Su, J., and Zhang, C., Front. Pharm., 2022, vol. 13, p. e803717. https://doi.org/10.3389/fphar.2022.803717

  16. Sun, Y., Huang, H., Zhan, Z., Gao, H., Zhang, C., Lai, J., Cao, J., Li, C., Chen, Y., and Liu, Z., Biochem. Biophys. Res. Commun., 2022, vol. 625, p. 38. https://doi.org/10.1016/j.bbrc.2022.07.101

    Article  CAS  PubMed  Google Scholar 

  17. Xu, M., Ren, L., Fan, J., Huang, L., Zhou, L., Li, X., and Ye, X., Life Sci., 2022, vol. 290, p. e120266. https://doi.org/10.1016/j.lfs.2021.120266

  18. Shah, D., Challagundla, N., Dave, V., Patidar, A., Saha, B., Nivsarkar, M., Trivedi, V.B., and Agrawal-Rajput, R., Phytomed., 2022, vol. 99, p. e153904. https://doi.org/10.1016/j.phymed.2021.153904

  19. Sun, Q., Yang, H., Liu, M., Ren, S., Zhao, H., Ming, T., Tang, S., Duan, D.D., and Xu, H., Phytomed., 2022, vol. 103, p. e154227. https://doi.org/10.1016/j.phymed.2022.154227

  20. Chen, Q., Hou, Y., Li, D., Ding, Z., Xu, X., Hao, B., Xia, Q., Li, M., and Fan, L., Ann. Transl. Med., 2022, vol. 10, p. A56. https://doi.org/10.21037/atm-22-1298

  21. Liu, M., Pan, Y., Tao, X., Kang, W., Liu, Y., Yang, Y., and Xiao, G., Biocell, 2022, vol. 46, p. 2257. https://doi.org/10.21203/rs.3.rs-282783/v1

    Article  CAS  Google Scholar 

  22. Ni, L., Li, Z., Ren, H., Kong, L., Chen, X., Xiong, M., Zhang, X., Ning, B., and Li, J., Clin. Exp. Pharmacol. Physiol., 2022, vol. 49, p. 134. https://doi.org/10.1111/1440-1681.13582

    Article  CAS  PubMed  Google Scholar 

  23. Du, Y., Khan, M., Fang, N., Ma, F., Du, H., Tan, Z., Wang, H., Yin, S., and Wei, X., Front. Pharm., 2022, vol. 13, p. e856777. https://doi.org/10.3389/fphar.2022.856777

  24. Fan, X., Li, J., Li, Z., Ni, L., Ren, H., and Sun, P., Front. Pharm., 2022, vol. 12, p. e775514. https://doi.org/10.3389/fphar.2021.775514

  25. Chen, J., Chen, Z., Huang, X., Li, X., Ma, M., Tao, C., Wang, L., Wu, Z., Zeng, Q., and Zhang, R., Cancer Chemother. Pharm., 2020, vol. 86, p. 151. https://doi.org/10.1007/s00280-020-04050-y

    Article  CAS  Google Scholar 

  26. Shen, Z., Wang, J., Tan, W., and Huang, T., Acta Pharm. Sin., 2021, vol. 42, p. 1190. https://doi.org/10.1038/s41401-020-00514-2

    Article  CAS  Google Scholar 

  27. Du, X., Liu, Y., Ma, H., Wang, Y., and Yao, J., OncoTargets Ther., 2020, vol. 13, p. 1909. https://doi.org/10.2147/OTT.S241632

    Article  Google Scholar 

  28. Qian, K., Tang, C.Y., Chen, L.Y., Zheng, S., Zhao, Y., Ma, L.S., Xu, L., Liu, Y., and Xiong, Y., ACS Omega, 2021, vol. 6, p. 10645. https://doi.org/10.1021/acsomega.0c06288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Filli, M.S., Ibrahim, A.A., Kesse, S., Aquib, M., Boakye-Yiadom, K.O., Farooq, M.A., Raza, F., Zhang, Y., and Wang, B., Brazil. J. Pharm. Sci., 2022, 58, p. E18835. https://doi.org/10.1590/s2175-97902020000318835

  30. Wang, Z., Wang, L., Shi, B., Sun, X., Xie, Y., Yang, H., Zi, C., Wang, X., and Sheng, J., Cell Biochem. Funct., 2021, vol. 39, p. 763. https://doi.org/10.1002/cbf.3638

    Article  CAS  PubMed  Google Scholar 

  31. Liu, J., Huang, X., Liu, D., Ji, K., Tao, C., Zhang, R., and Chen, J., Phytomed., 2021, vol. 91, p. e153678. https://doi.org/10.1016/j.phymed.2021.153678

  32. Ning, H., Lu, W., Jia, Q., Wang, J., Yao, T., Lv, S., Li, Y., and Wen, H., Invest. New Drugs, 2021, vol. 39, p. 386. https://doi.org/10.1007/s10637-020-01006-0

    Article  CAS  PubMed  Google Scholar 

  33. Liu, X., Zhang, Y., Zhou, G., Hou, Y., Kong, Q., Lu, J., Zhang, Q., and Chen, X., Toxicol. Appl. Pharm., 2020, vol. 404, p. e115179. https://doi.org/10.1016/j.taap.2020.115179

  34. Chumkaew, P., Teerapongpisan, P., Pechwang, J., and Srisawat, T., Rec. Nat. Prod., 2019, vol. 13, p. 491. https://doi.org/10.25135/rnp.128.19.02.1181

    Article  CAS  Google Scholar 

  35. Sun, Y., Gao, X., Wu, P., Wink, M., Li, J., Dian, L., and Liang, Z., Phytomed., 2019, vol. 63, p. e153015. https://doi.org/10.1016/j.phymed.2019.153015

  36. Łuszczki, J.J., Adamczuk, G., Grabarska, A., Kalpoutzakis, E., Kukula-Koch, W., Skaltsounis, A.L., Stepulak, A., and Wróblewska-łuczka, P., Molecules, 2021, vol. 26, p. e6253. https://doi.org/10.3390/molecules26206253

  37. Buszewski, B., Kapron, B., Makuch-Kocka, A., Misiurek, J., Petruczynik, A., Szultka-Młynska, M., Szymczak, G., and Tuzimski, T., Molecules, 2021, vol. 26, p. e816. https://doi.org/10.3390/molecules26040816

  38. Kim, S.Y., Hwangbo, H., Kim, M.Y., Ji, S.Y., Lee, H., Kim, G.Y., Kwon, C.Y., Cheong, J., and Choi, Y.H., Arch. Biochem. Biophys., 2021, vol. 697, p. e108688. https://doi.org/10.1016/j.abb.2020.108688

  39. Habartova, K., Havelek, R., Seifrtova1, M., Kralovec, K., Cahlikova, L., Chlebek, J., Cermakova, E., Mazankova, E., Marikova, J., Kunes, J., Novakova, L., and Rezacova, M., Sci. Rep., 2018, vol. 8, p. e4829. https://doi.org/10.1038/s41598-018-22862-0

  40. Tian, J., Mo, J., Xu, L., Zhang, R., Qiao, Y., Liu, B., Jiang, L., Ma, S., and Shi, G., Chem.-Biol. Interact., 2020, vol. 327, p. e109184. https://doi.org/10.1016/j.cbi.2020.109184

  41. Fu, L., Dai, D.C., Yang, R., Chen, G.Y., Zheng, C.J., Song, X.M., and Zhou, X.M., Fitoterapia, 2021, vol. 155, p. e105036. https://doi.org/10.1016/j.fitote.2021.105036

  42. Takashima, K., Teramachi, M., Marumoto, S., Ishikawa, F., Manse, Y., Morikawa, T., and Tanabe, G., Bioorg. Med. Chem. Lett., 2022, vol. 78, p. e129034. https://doi.org/10.1016/j.bmcl.2022.129034

  43. Cao, Z., Zhu, S., Xue, Z., Zhang, F., Zhang, L., Zhang, Y., Guo, Y., Zhan, G., Zhang, X., and Guo, Z., Phytochem., 2022, vol. 202, p. e113321. https://doi.org/10.1016/j.phytochem.2022.113321

  44. An, J., Huang, H., Jin, G., Lan, L., Lei, J., Ma, N., Shangguan, F., Zhou, S., and Zhuang, W., Phytomed., 2022, vol. 102, p. e154164. https://doi.org/10.1016/j.phymed.2022.154164

  45. Wu, S.Z., Wu, X.L., Zhou, G.X., Deng, L., Pang, P., Tang, H., Xu, H.C., Shi, Y.C., and Chen, X.Y., Phytochem. Lett., 2018, vol. 27, p. 108. https://doi.org/10.1016/j.phytol.2018.07.019

    Article  CAS  Google Scholar 

  46. Cheng, H.F., Guo, Y.J., Li, Z.R., Liu, H.M., Liu, Z.Z., Maa, M., Niu, S.H., Zhao, L.J., and Zheng, Y.C., Bioorg. Chem., 2020, vol. 97, p. e103648. https://doi.org/10.1016/j.bioorg.2020.103648

  47. Yu, L., Han, S., Lang, L., Song, H., Zhang, C.Y., Dong, L., Jia, S., Xu, Y., and Zhang, X.P., Phytomed., 2021, vol. 84, p. e153504. https://doi.org/10.1016/j.phymed.2021.153504

  48. Nugraha, A.S., Haritakun, R., Lambert, J.M., Dillon, C.T., and Keller, P.A., Nat. Prod. Res., 2021, vol. 35, p. 481. https://doi.org/10.1080/14786419.2019.1638380

    Article  CAS  PubMed  Google Scholar 

  49. El-Elimat, T., Alhawarri, M.B., Rivera-Chávez, J., Burdette, J.E., Czarnecki, A., Al-Gharaibeh, M., Al-Sharie, A.H., Alhusban, A., Alali, F.Q., and Oberlies, N.H., Fitoterapia, 2020, vol. 146, p. e104706. https://doi.org/10.1016/j.fitote.2020.104706

  50. Okon, E., Kukula-Koch, W., Halasa, M., Jarzab, A., Baran, M., Dmoszynska-Graniczka, M., Angelis, A., Stepulak, A., and Wawruszak, A., Biomol., 2020, vol. 10, p. e1532. https://doi.org/10.3390/biom10111532

  51. Yang, P., Cheng, Y., Huang, X., Huang, B., Yi, L., He, H., and Xie, Y., Nat. Prod. Res., 2023, vol. 37, p. 912. https://doi.org/10.1080/14786419.2022.2096606

    Article  CAS  PubMed  Google Scholar 

  52. Lookpan, T., Voravuthikunchai, S.P., Sitthisuk, P., Poorahong, W., Watanapokasin, R., and Chakthong, S., Nat. Prod. Res., 2023, https://doi.org/10.1080/14786419.2022.2127708

  53. Xue, F., and Chen, T., Curr. Top. Nutraceut. Res., 2021, vol. 19, p. 164. https://doi.org/10.37290/ctnr2641-452X.19:164-171

    Article  Google Scholar 

  54. De Souza, C.A.S., Nardelli, V.B., Paz, W.H.P., Pinheiro, M.L.B., Da Rodrigues, A.C.B., Bomfim, L.M., Soares, M.B.P., Da Silva, F.M.A., and Costa, E.V., Quimica Nova, 2020, vol. 43, p. 1397. https://doi.org/10.21577/0100-4042.20170617

    Article  CAS  Google Scholar 

  55. Lin, J.H. and Hu, M.H., Phytochem. Lett., 2022, vol. 52, p. 1. https://doi.org/10.1016/j.phytol.2022.08.011

    Article  CAS  Google Scholar 

  56. Fayez, S., Feineis, D., Mudogo, V., Seo, E.J., Efferth, T., and Bringmann, G., Fitoterapia, 2018, vol. 129, p. 114. https://doi.org/10.1016/j.fitote.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  57. Fayez, S., Feineis, D., Assi, L.A., Kaiser, M., Brun, R., Awale, S., and Bringmann, G., Fitoterapia, 2018, vol. 131, p. 245. https://doi.org/10.1016/j.fitote.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  58. Kavatsurwa, S.M., Lombe, B.K., Feineis, D., Dibwe, D.F., Maharaj, V., Awale, S., and Bringmann, G., Fitoterapia, 2018, vol. 130, p. 6. https://doi.org/10.1016/j.fitote.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  59. Fayez, S., Cacciatore, A., Sun, S., Kim, M., Assi, L.A., Feineis, D., Awale, S., and Bringmann, G., Bioorg. Med. Chem., 2021, vol. 30, p. e115950. https://doi.org/10.1016/j.bmc.2020.115950

  60. Awale, S., Dibwe, D.F., Balachandran, C., Fayez, S., Feineis, D., Lombe, B.K., and Bringmann, G., J. Nat. Prod., 2018, vol. 81, p. 2282. https://doi.org/10.1021/acs.jnatprod.8b00733

    Article  CAS  PubMed  Google Scholar 

  61. Tshitenge, D.T., Bruhn, T., Feineis, D., Schmidt, D., Mudogo, V., Kaiser, M., Brun, R., Würthner, F., Awale, S., and Bringmann, G., J. Nat. Prod., 2019, vol. 82, p. 3150. https://doi.org/10.1021/acs.jnatprod.9b00755

    Article  CAS  PubMed  Google Scholar 

  62. Takeuchi, M., Saito, Y., Goto, M., Miyake, K., Newman, D.J., O'Keefe, B.R., Lee, K.H., and Nakagawa-Goto, K., J. Nat. Prod., 2018, vol. 81, p. 1884. https://doi.org/10.1021/acs.jnatprod.8b00411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun, N. and Han, Y., J. Asian Nat. Prod. Res., 2021, vol. 23, p. 1. https://doi.org/10.1080/10286020.2019.1694515

    Article  CAS  PubMed  Google Scholar 

  64. Sancha, S.A.R., Gomes, A.V., Loureiro, J.B., Saraiva, L., and Ferreira, M.J.U., Molecules, 2022, vol. 27, p. e5759. https://doi.org/10.3390/molecules27185759

  65. Huang, Z., Xu, H., Chen, H., Sun, B., Huang, H., Fan, H., and Zheng, J., Fitoterapia, 2021, vol. 153, p. e104994. https://doi.org/10.1016/j.fitote.2021.104994

  66. He, D.H., Liu, J., Fang, D.M., Wang, X.L., and Li, L.M., Acta Pharm. Sin., 2021, vol. 56, p. 3503. https://doi.org/10.16438/j.0513-4870.2021-1170

    Article  CAS  Google Scholar 

  67. Katoch, D., Kumar, D., Padwad, Y.S., Sharma, U., and Singh, B., Nat. Prod. Res., 2020, vol. 34, p. 233. https://doi.org/10.1080/14786419.2018.1527836

    Article  CAS  PubMed  Google Scholar 

  68. Luo, T., Li, Z., Deng, X.M., Jiang, K., Liu, D., Zhang, H.H., Shi, T., Li, Q.E., and Wang, Z., Bioorg. Med. Chem., 2022, vol. 60, p. e116705. https://doi.org/10.1016/j.bmc.2022.116705

  69. Wen, H., Yuan, X., Li, C., Li, J., and Yue, H., Nat. Prod. Res., 2023, https://doi.org/10.1080/14786419.2022.2146108

  70. Sun, B., Assani, I., Wang, C.G., Wang, M.X., Liu, L.F., Li, Y., Yan, G., Yang, Y.R., Chen, Z., and Liao, Z.X., Nat. Prod. Res., 2022, vol. 36, p. 5304. https://doi.org/10.1080/14786419.2021.1937154

    Article  CAS  PubMed  Google Scholar 

  71. Zong, K., Gong, C., Shao, Z., Songa, C., and Meng, D., Chem. Biodiversity, 2022, vol. 19, p. E202200542. https://doi.org/10.1002/cbdv.202200542

  72. Chamni, S., Sirimangkalakitti, N., Chanvorachote, P., Suwanborirux, K., and Saito, N., Mar. Drugs, 2020, vol. 18, p. e418. https://doi.org/10.3390/md18080418

  73. Al-Ghazzawi, A.M., BMC Chem., 2019, vol. 13, p. e13. https://doi.org/10.1186/s13065-019-0536-4

  74. Bezerra, D.P., Chaar, J.S., Costa, E.V., Koolen, H.H.F., Santos, L.S., Silva, V.R., Soares, L.N., Zengin, G., and Silva, F.M.A., Molecules, 2021, vol. 26, p. e3714. https://doi.org/10.3390/molecules26123714

  75. Parcha, P.K., Sarvagalla, S., Ashok, C., Sudharshan, S., Dyavaiah, M., Coumar, M.S., and Rajasekaran, B., Pharmacol. Rep., 2021, vol. 73, p. 615. https://doi.org/10.1007/s43440-020-00196-x

    Article  CAS  PubMed  Google Scholar 

  76. Xue, J.J., Li, J.Y., Li, B.J., Jin, Y.T., Wang, C.H., Xue, C.M., Zhang, H.M., Li, Z.L., Li, D.H., and Hua, H.M., Chin. J. Chin. Mater. Med., 2022, vol. 47, p. 2676. https://doi.org/10.19540/j.cnki.cjcmm.20211227.203

    Article  Google Scholar 

  77. Moodley, N., Crouch, N.R., Bastida, J., and Mulholland, D.A., S. Afr. J. Botany, 2021, vol. 136, p. 40. https://doi.org/10.1016/j.sajb.2020.07.029

    Article  CAS  Google Scholar 

  78. Luo, J.Z., Li, M.S., Song, X.X., Fang, Y.L., Mo, H.N., Jiang, J.C., Zhao, H.Y., and Wang, H.S., Fitoterapia, 2022, vol. 162, p. e105289. https://doi.org/10.1016/j.fitote.2022.105289

  79. Yu, M., Wang, H., Wang, P., Huang, S., Cai, C., Kong, F., Qu, Y., Liu, L., Mei, W., and Dai, H., Phytochem. Lett., 2019, vol. 34, p. 1. https://doi.org/10.1016/j.phytol.2019.08.008

    Article  CAS  Google Scholar 

  80. Bringmann, G., Fayez, S., Kumar, S., Kushwaha, P.P., Prajapati, K.S., Shuaib, M., and Singh, A.K., Toxicol. Appl. Pharm., 2020, vol. 409, p. e115297. https://doi.org/10.1016/j.taap.2020.115297

  81. Fayez, S., Li, J., Feineis, D., Assi, L.A., Kaiser, M., Brun, R., Anany, M.A., Wajant, H., and Bringmann, G., J. Nat. Prod., 2019, vol. 82, p. 3033. https://doi.org/10.1021/acs.jnatprod.9b00589

    Article  CAS  PubMed  Google Scholar 

  82. Zhou, S.Y., Fan, F., Sun, J.Z., Guo, Z., Sun, W.T., Chen, L., Tang, Q.Q., Yu, J., and Cai, Y.S., Phytochem. Lett., 2018, vol. 26, p. 195. https://doi.org/10.1016/j.phytol.2018.06.012

    Article  CAS  Google Scholar 

  83. Chaichompoo, W., Chokchaisiri, R., Apiratikul, N., Chairoungdua, A., Yingyongnarongkul, B., Chunglok, W., Tocharus, C., and Suksamrarn, A., Med. Chem. Res., 2018, vol. 27, p. 939. https://doi.org/10.1007/s00044-017-2115-3

    Article  CAS  Google Scholar 

  84. Xue, J., Wang, Y., Liu, F., Yang, H., Lin, B., Li, Z., Jing, Y., Li, D., and Hua, H., Chin. J. Chem., 2022, vol. 40, p. 1831. https://doi.org/10.1002/cjoc.202200159

    Article  CAS  Google Scholar 

  85. Zhu, F., Li, X., Tang, X., Jiang, J., Han, Y., Li, Y., Ma, C., Liu, Z., and He, Y., Int. J. Mol. Med., 2021, vol. 48, p. e124. https://doi.org/10.3892/ijmm.2021.4957

  86. Ozal, S.A., Gurlu, V., Turkekul, K., and Erdogan, S., Cutan. Ocul. Toxicol., 2020, vol. 39, p. 97. https://doi.org/10.1080/15569527.2020.1730882

    Article  CAS  PubMed  Google Scholar 

  87. Zhu, Y.Y., Jin, Q., Chen, S.S., Jin, D.N., Wang, Z.J., He, Y.J., Chen, H.C., Dai, Z., and Luo, X.D., Bioorg. Med. Chem., 2021, vol. 29, p. e115849. https://doi.org/10.1016/j.bmc.2020.115849

  88. Lee, H.S., Kim, D.H., Lee, I.S., Park, J.H., Martin, G., Safe, S., Kim, K.J., Kim, J.H., Jang, B.I., and Lee, S.O., Int. J. Mol. Sci., 2022, vol. 23, p. e5280. https://doi.org/10.3390/ijms23095280

  89. Xu, W., Wang, X., Chen, S., Wu, H., Tanaka, S., Onda, K., Sugiyama, K., Yamada, H., and Hirano, T., Eur. J. Pharmacol., 2020, vol. 881, p. e173232. https://doi.org/10.1016/j.ejphar.2020.173232

  90. Jung, Y.Y., Shanmugam, M.K., Chinnathambi, A., Alharbi, S.A., Shair, O.H.M., Um, J.Y., Sethi, G., and Ahn, K.S. Molecules, 2019, vol. 24, p. e3127. https://doi.org/10.3390/molecules24173127

  91. Jiang, F., Ren, S., Chen, Y., Zhang, A., Zhu, Y., Zhang, Z., Li, Z., and Piao, D., Oncol. Rep., 2021, vol. 45, p. 139. https://doi.org/10.3892/or.2020.7857

    Article  CAS  PubMed  Google Scholar 

  92. Koutova, D., Kulhava, M., Havelek, R., Majorosova, M., Královec, K., Habartova, K., Hošt’álková, A., Opletal, L., Cahlikova, L., and Řezáčová, M., Molecules, 2020, vol. 25, p. e964. https://doi.org/10.3390/molecules25040964

  93. Song, C.F., Hu, Y.H., Mang, Z.G., Ye, Z., Chen, H.D., Jing, D.S., Fan, G.X., Xu, X.W., and Qin, Y., Acta Pharmacol. Sin., 2022, vol. 43, p. 3130. https://doi.org/10.1038/s41401-022-01006-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-m. Shi.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Bs., Liu, K., Wang, J. et al. Anticancer Potential of Nature-Derived Isoquinoline Alkaloids (A Review). Russ J Gen Chem 93, 1294–1310 (2023). https://doi.org/10.1134/S1070363223050286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223050286

Keywords:

Navigation