Skip to main content
Log in

Degradation of Oil and Petroleum Products by Biocompositions Based on Humic Acids of Peats and Oil-Degrading Microorganisms

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The literature on the use of humic acids (HAs) in ecoadaptive technologies, as well as of biological and biotechnological methods of remediation of environmental media from oil pollution was surveyed, and the research results on development of biocompositions based on humic acids of peats and oil-degrading microorganisms of the genus Rhodococcus for the inactivation of oil and petroleum products in soil and aquatic environments under various abiotic conditions were summarized. Biocompositions exhibit enhanced dispersing, solubilizing, stabilizing, and biodegrading abilities with respect to oil and petroleum products in fresh and salt water and at low temperatures. The prospects of the combined use of oil-degrading bacteria and humic acids in the biocompositions as a biotechnological direction in the development of effective biopreparations for decomposition of petroleum hydrocarbons were demonstrated. Differences in the inactivating abilities of the biocompositions with respect to oil and petroleum products are associated with those in the ability of strains of microorganisms to form a biofilm on the surface of humic acids. In aquatic environments, the most versatile biocompositions exhibiting maximal biodegrading abilities are HAs (sphagnum high-moor peat) + Rh. erythropolis S67, HAs (reed fen peat) + Rh. erythropolis S67, and HAs (sphagnum high-moor peat) + Rh. erythropolis X5. The stabilizing ability of the biocompositions is determined by the origin of humic acids, being independent of the selected bacterial strain. High biodegradability of the biocompositions is due to the synergism of the action of the oil-degrading bacteria and humic acids under the conditions of oil pollution. Specifically, microorganisms oxidize hydrocarbon compounds, which they dissolve or emulsify, through release of biosurfactants, and humic acids, acting as a matrix for the biofilm formation, facilitate spontaneous adsorption of the microorganisms of the genus Rhodococcus at the oil–water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Leont’eva, M.M., Bogatyrev, Yu.V., Syundyukova, K.V., and Dmitrieva, E.D., Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2017, vol. 1, pp. 49–57.

    Google Scholar 

  2. Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, and Formation), St. Petersburg: Sankt-Peterb. Univ., 2004.

  3. Orlov, D.S., Khimiya pochv (Soil Chemistry), Moscow: Mosk. Univ., 1992.

  4. Semenov, V.M., Tulina, A.S., Semenova, N.A., and Ivannikova, L.A., Pochvovedenie, 2013, no. 4, pp. 393–407. https://doi.org/10.7868/S0032180X13040114

    Article  Google Scholar 

  5. Proidakov, A.G., Solid Fuel Chem., 2009, vol. 43, no. 1, pp. 9–14. https://doi.org/10.3103/S0361521909010030

    Article  Google Scholar 

  6. Romaris-Hortas, V., Moreda-Pineiro, A., and BermejoBarrera, P., Anal. Chim. Acta, 2007, vol. 602, pp. 202–210. https://doi.org/10.1016/j.aca.2007.09.022

    Article  CAS  Google Scholar 

  7. Schulten, H. R. and Schnitzer, M., Naturwissensch., 1993, vol. 80, pp. 29–30. https://doi.org/10.1007/BF01139754

    Article  CAS  Google Scholar 

  8. Shirshova, L.T., Ghabbour, E.A., and Davies, G., Geoderma, 2006, vol. 133, pp. 204–216. https://doi.org/10.1016/j.geoderma.2008.11.026

    Article  CAS  Google Scholar 

  9. Jezierski, A., Czechowski, F., Jerzykiewicz, M., and Drozd, J., Appl. Magn. Reson., 2000, vol. 18, pp. 127–128. https://doi.org/10.1007/BF03162104

    Article  CAS  Google Scholar 

  10. Martyniuk, I. and Więckowska, J., Fuel Process. Technol., 2003, vol. 84, pp. 23–36. https://doi.org/10.1016/S0378-3820(02)00246-1

    Article  CAS  Google Scholar 

  11. Gostishcheva, M.V., Fed’ko, I.V., and Shchegolikhina, A.I., Nov. Dostizh. Sozd. Lekarstv. Sredstv, 2006, pp. 71–74.

  12. Kovtun, A.I., Khil’ko, S.L., and Lishtvan, I.I., Prirodopol’zovanie, 2004, no. 10, pp. 114–119.

    Google Scholar 

  13. Lishtvan, I.I., Prirodopol’zovanie, 1996, no. 1, pp. 4–6.

    Google Scholar 

  14. Ivanov, A.A., Mal’tseva, E.V., Yudina, N.V., and Matis, E.Ya., Trudy IV Vserossiiskoi konferentsii “Guminovye veshchestva v biosfere” (Proc. IV All-Russian Conf. “Humic Substances in Biosphere”), Moscow: Mosk. Gos. Univ., 2007, pp. 447–455.

  15. Kanis’kin, M.A., Izosimov, A.A., Terekhova, V.A., Yakimenko, O.S., and Pukal’chik, M.A., Teor. Prikl. Ekol., 2011, no. 1, pp. 87–95.

    Google Scholar 

  16. Yakimenko, O.S. and Terekhova, V.A., Pochvovedenie, 2011, no. 11, pp. 1334–1343.

    Google Scholar 

  17. Kulikova, N.A., Davidchik, V.N., Tsvetkova, E.A., and Koroleva, O.V., Adv. Microbiol., 2013, vol. 3, pp. 145–153. https://doi.org/10.4236/aim.2013.32023

    Article  Google Scholar 

  18. Klyain, O.I., Kulikova, N.A., and Stepanova, E.V., Biotekhnologiya, 2013, vol. 4, pp. 65–83.

    Google Scholar 

  19. Canellas, L.P., Zandonodi, D.B., and Busato, J.G., Soil Sci., 2008, vol. 173, no. 9, pp. 624–637.

    Article  CAS  Google Scholar 

  20. Kornilaeva, G.V., Perminova, I.V., and Gilyazova, A.V., Ross. Immunol. Zh., 2010, vol. 4, no. 3, pp. 255–260.

    Google Scholar 

  21. Haritash, A.K. and Kaushik, C.P., J. Hazard. Mater., 2009, vol. 169, nos. 1–3, pp. 1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137

    Article  CAS  Google Scholar 

  22. TR (Technical Regulations) 002–13787869–2013: Remediation of Oil-Contaminated Soils, Grounds, and Drill Cuttings Using Gumikom Preparation, 2014.

  23. Bambalov, N.N., Smirnova, V.V., and Nemkovich, A.S., Prirodopol’zovanie, 2012, no. 21, pp. 244–247.

  24. Krasnoberskaya, O.G., Sokolov, G.A., and Simakina, I.V., Prirodopol’zovanie, 2012, no. 21, pp. 249–254.

    Google Scholar 

  25. Kholodov, V.A., Butneva, I.A., and Grechishcheva, N.Yu., Agrokhim. Vestn., 2008, no. 5, pp. 31–33.

    Google Scholar 

  26. Vaisman, Ya.I., Glushankova, I.S., and Rudakova, L.V., Neft. Khoz., 2013, no. 10, pp. 128–131.

    Google Scholar 

  27. Kim, D., Choi, K.Y., Yoo, M., Zylstra, G., and Kim, E., J. Microbiol. Biotechnol., 2018, vol. 28, no. 7, pp. 1037–1051. https://doi.org/10.4014/jmb.1712.12017

    Article  CAS  Google Scholar 

  28. Shaidullina, I.A., Antonov, N.A., and Kolesnikova, N.E., Proc. Sci. Session of Scientists of the Almet’evsk State Oil Institute, 2013, no. 1, pp. 168–173.

    Google Scholar 

  29. Ivasishin, P.L., Maryutina, T.A., and Savovina, E.Yu., Zashch. Okr. Sredy Neftegaz. Kompl., 2011, no. 5, pp. 19–23.

    Google Scholar 

  30. Yakimenko, O.S. and Terekhova, V.A., Pochvovedenie, 2011, no. 11, pp. 1334–1343.

    Google Scholar 

  31. Burgos, W.D., Pisutpaisal, N., and Tuntoolavest, M., Environ. Eng. Sci., 2000, vol. 17, pp. 343–351. https://doi.org/10.1089/ees.2000.17.343

    Article  CAS  Google Scholar 

  32. Laor, Y., Strom, P.F., and Farmer, W.J., Water Res., 1999, vol. 33, pp. 1719–1729.

    Article  CAS  Google Scholar 

  33. Ortega-Calvo, J.J. and Saiz-Jimenez, C., Appl. Environ. Microbiol., 1998, vol. 64, no. 8, pp. 3123–3126.

    Article  CAS  Google Scholar 

  34. Kastner, M. and Mahro, B., Appl. Microbiol. Biotechnol., 1996, vol. 44, no. 5, pp. 668–675.

    Article  CAS  Google Scholar 

  35. Smith, K.E., Thullner, M., Wick, L.Y., and Harms, H., Environ. Sci. Technol., 2009, vol. 43, no. 19, pp. 7205–7211. https://doi.org/10.1021/es803661s

    Article  CAS  Google Scholar 

  36. Puglisi, E., Cappa, F., and Fraqoulis, G., Chemosphere, 2007, vol. 67, no. 3, pp. 548–556. https://doi.org/10.1016/j.chemosphere.2006.09.058

    Article  CAS  Google Scholar 

  37. Hoffmann, K., Popawski, D., and Huculak-Mczka, M., Ecol. Chem. Eng. A, 2012, vol. 19, pp. 1107–1113.

    CAS  Google Scholar 

  38. Shchukina, V.D., Kholodov, V.A., Parfenova, A.M., Lazareva, E.V., and Perminova, I.V., Khimicheskaya fizika i stroenie veshchestva, k 90-letiyu V.I. Gol’danskogo (Chemical Physics and Structure of Matter, to the 90th Anniversary of V.I. Gol’danskii), Moscow: Torus, 2013, pp. 101–104.

  39. Terashima, M., Fukushima, M., and Tanaka, S., Colloids Surf., A: Physicochem. Eng. Asp., 2004, vol. 247, pp. 77–83. https://doi.org/10.1016/J.COLSURFA.2004.08.028

    Article  CAS  Google Scholar 

  40. Funtikova, T.V., Puntus, I.F., Akhmetov, L.I., Appazov, N.O., Narmanova, R.A., and Filonov, A.E., Actualscience, 2015, vol. 1, no. 3, pp. 18–19.

    Google Scholar 

  41. Sharma, A., Mishra, M., Shukla, A.K., Kumar, R., Abdin, M.Z., and Chowdhuri, D.K., J. Hazard. Mater., 2012, vols. 221–222, pp. 275–287. https://doi.org/10.1016/j.jhazmat.2012.04.045

    Article  CAS  Google Scholar 

  42. Al-Hawash, A.B., Alkooranee, J.T., Abbood, H.A., Zhang, J., Sun, J., Zhang, X., and Ma, F., Biotechnol. Rep., 2018, vol. 17, pp. 104–109. https://doi.org/10.1016/j.btre.2017.12.006

    Article  Google Scholar 

  43. Panda, S., Kar, R., and Panda, C., Environ. Sci. Technol., 2013, vol. 3, no. 5, pp. 1314–1321.

    CAS  Google Scholar 

  44. Lee, C.H., Shin, H.S., and Kang, K.H., J. Soil Groundwater Environ., 2004, vol. 9, no. 4, pp. 42–51.

    Google Scholar 

  45. Liu, S., Guo, C., Liang, X., Wu, F., and Dang, Z., Ecotoxicol. Environ. Saf., 2016, vol. 129, pp. 210–218. https://doi.org/10.1016/j.ecoenv.2016.03.035

    Article  CAS  Google Scholar 

  46. Varjani, S.J. and Gansounou, E., Bioresour. Technol., 2017, vol. 245, pp. 1258–1265. https://doi.org/10.1016/j.biortech.2017.08.028

    Article  CAS  Google Scholar 

  47. Yakimov, M.M., Timmis, K.N., and Golyshin, P.N., Curr. Opin. Biotechnol., 2007, vol. 18, pp. 257–266. https://doi.org/10.1016/j.copbio.2007.04.006

    Article  CAS  Google Scholar 

  48. Maiti, A., Das, S., and Bhaacharyya, N., J. Sci., 2012, vol. 2, no. 2, pp. 103–108.

    Google Scholar 

  49. Zhen-Yu, W., Ying, X.U., Hao-Yun, W., Jian, Z., Dong-Mei, G., Li, F.M., and Xing, B., Pedosphere, 2012, vol. 22, no. 5, pp. 717–725. https://doi.org/10.1016/S1002-0160(12)60057-5

    Article  Google Scholar 

  50. Das, K. and Mukherjee, A.K., Bioresour. Technol., 2007, vol. 98, pp. 1339–1345. https://doi.org/10.1016/j.biortech.2006.05.032

    Article  CAS  Google Scholar 

  51. Husaini, A., Roslan, H.A., Hii, K.S.Y., and Ang, C.H., World J. Microbiol. Biotechnol., 2008, vol. 24, pp. 2789–2797. https://doi.org/10.1007/s11274-008-9806-3

    Article  CAS  Google Scholar 

  52. Moutsatsou, A., Gregou, M., Matsas, D., and Protonotarios, V., Chemosphere, 2006, vol. 63, pp. 1632–1640. https://doi.org/10.1016/j.chemosphere.2005.10.015

    Article  CAS  Google Scholar 

  53. Calvillo, Y.M. and Alexander, M., Appl. Microb. Biotechnol., 1996, vol. 45, no. 3, pp. 383–390. https://doi.org/10.1007/s002530050700

    Article  CAS  Google Scholar 

  54. Foster, J.W., J. Microbiol. Serol., 1962, vol. 28, pp. 241–274.

  55. Grötzschel, S., Köster, J., Abed, R.M.M., and de Beer, D., Biodegradation, 2002, vol. 13, no. 4, pp. 273–283. https://doi.org/10.1023/a:1021263009377

    Article  Google Scholar 

  56. Plaza, C., Xing, B., and Fernandez, J.M., Environ. Pollut., 2009, vol. 157, no. 1, pp. 257–263. https://doi.org/10.1016/j.envpol.2008.07.016

    Article  CAS  Google Scholar 

  57. Jobson, A., Cook, F.D., and Westlake, D.W.S., Appl. Microbiol., 1972, vol. 23, pp. 1082–1089. https://doi.org/10.1128/AEM.23.6.1082-1089.1972

    Article  CAS  Google Scholar 

  58. Filip, Z. and Demnerova, K., in Environmental Security in Harbors and Coastal Areas, Linkov, I., Kiker, G.A., and Wenning, R.J., Eds., Dordrecht: Springer, 2007, pp. 343–353.

  59. Nebbioso, A. and Piccolo, A., Biomacromolecules, 2011, vol. 12, no. 4, pp. 1187–1199. https://doi.org/10.1021/bm101488e

    Article  CAS  Google Scholar 

  60. Uhlik, O., Wald, J., Strejcek, M., Musilova, L., Ridl, J., Hroudova, M., and Macek, T., PLoS ONE, 2012, vol. 7, no. 7, pp. 1–10. https://doi.org/10.1371/journal.pone.0040653

    Article  CAS  Google Scholar 

  61. Li, B., Zhang, X., Guo, F., Wu, W., and Zhang, T., Water Res., 2013, vol. 47, pp. 4207–4216. https://doi.org/10.1016/j.watres.2013.04.021

  62. Rubtsova, E.V., Krivoruchko, A.V., Yarullina, D.R., Bogachev, M.I., Kim, A.S., Kuyukina, M.S., and Ivshina, I.B., Fundam. Issled., 2013, no. 4, pp. 900–904.

    Google Scholar 

  63. Perry, C.T., Berkeley, A., and Smithers, S.G., J. Sedim. Res., 2008, vol. 78, pp. 77–97. https://doi.org/10.2110/jsr.2008.015

    Article  Google Scholar 

  64. De Carvalho, A.A.T., Mantovani, H.C., Paiva, A.D., and De Melo, M.R., J. Appl. Microbiol., 2009, vol. 107, no. 1, pp. 339–347. https://doi.org/10.1111/j.1365-2672.2009.04212.x

    Article  CAS  Google Scholar 

  65. Shvetsov, V.N., Morozova, K.M., Semenov, M.Yu., Pushnikov, M.Yu., Stepanov, A.S., and Nikiforov, S.E., Vodosnabzh. Sanit. Tekhn., 2008, no. 3, pp. 39–42.

    Google Scholar 

  66. Dmitrieva, E.D., Gertsen, M.M., and Dremova, A.A., Khim. Rast. Syr’ya, 2022, no. 2, pp. 261–269.

    Google Scholar 

  67. Dang, N.P., Landfald, B., and Willassen, N.P., Environ. Technol., 2015, vol. 37, no. 9, pp. 1151–1158. https://doi.org/10.1080/09593330.2015.1103784

    Article  CAS  Google Scholar 

  68. Belyakov, A.Yu. and Pleshakova, E.V., Izv. Sarat. Univ. Nov. Ser., Ser. Khim. Biol. Ekol., 2013, vol. 13, no. 4, pp. 37–42.

    Google Scholar 

  69. Berdichevskaya, M.V., Mikrobiologiya, 1989, vol. 58, no. 1, pp. 60–65.

    CAS  Google Scholar 

  70. Nechaeva, I.A., Lyong, T.M., and Satina, V.E., Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2016, vol. 1, pp. 90–98.

    Google Scholar 

  71. Zampolli, J., Collina, E., Lasagni, M., and Gennaro, P., Appl. Environ. Microbiol., 2014, vol. 4, Art. 73. https://doi.org/10.1186/s13568-014-0073-4

  72. Karimova, V.T. and Dmitrieva, E.D., Vestn. Tver. Gos. Univ., Ser. Khim., 2018, no. 2, pp. 145–157.

    Google Scholar 

  73. Dmitrieva, E.D., Leont’eva, M.M., and Osina, K.V., Vestn. Tver. Gos. Univ., Ser. Khim., 2019, no. 1(35), pp. 134–146. https://doi.org/10.17223/24135542/7/1

    Article  Google Scholar 

  74. Dmitrieva, E.D., Karimova, V.T., and Nechaeva, I.A., Vestn. Tul. Gos. Univ., Ser. Estestv. Nauki, 2017, no. 2, pp. 60–68.

    Google Scholar 

  75. Dmitrieva, E.D., Leont’eva, M.M., and Karimova, V.T., Uch. Zap. Krym. Fed. Univ. im. V. I. Vernadskogo, Biol. Khim., 2018, vol. 4(70), no. 2, pp. 43–56.

    Google Scholar 

  76. Roberts, T.L., Turk. J. Agric. For, 2008, vol. 32, pp. 177–182.

    Google Scholar 

  77. Gertsen, M.M. and Dmitrieva, E.D., Mor. J. Chem., 2020, vol. 8, no. 2, pp. 392–399.

    CAS  Google Scholar 

  78. Gertsen, M.M. and Dmitrieva, E.D., Vestn. Tver. Gos. Univ., Ser. Khim., 2021, vol. 44, no. 2, pp. 69–79. https://doi.org/10.26456/vtchem2021.2.7

    Article  Google Scholar 

  79. Dmitrieva, E.D, Efimova, E.N., Siundiukova, K.V., and Perelomov, L.V., Environ. Chem. Lett., 2015, vol. 13, no. 2, pp. 197–202. https://doi.org/10.1007/s10311-015-0497-3

    Article  CAS  Google Scholar 

  80. Salgado-Brito, R., Neria, M.I., Mesta-Howard, A.M., Cedillo, F.D., and Wang, E.T., Ann. Microbiol., 2007, no. 57, pp. 321–328. https://doi.org/10.1007/BF03175067

    Article  CAS  Google Scholar 

  81. Dmitrieva, E.D. and Gertsen, M.M., Vestn. Tver. Gos. Univ., Ser. Khim., 2021, no. 4(46), pp. 142–150. https://doi.org/10.26456/vtchem2021.4.16

    Article  Google Scholar 

  82. Gertsen, M.M. and Dmitrieva, E.D., Vestn. Tver. Gos. Univ., Ser. Khim., 2021, no. 4 (46), pp. 151–160. https://doi.org/10.26456/vtchem2021.4.17

    Article  Google Scholar 

  83. Grechishcheva, N.Yu., Perminova, I.V., Kholodov, V.A., and Meshcheryakov, S.V., Ross. Khim. Zh., 2015, vol. 59, no. 4, pp. 34–50.

    Google Scholar 

  84. Gertsen, M.M. and Dmitrieva, E.D., Teor. Pprikl. Ekol., 2021, no. 2, pp. 142–148. https://doi.org/10.25750/1995-4301-2021-2-142-148

    Article  Google Scholar 

  85. Gertsen, M.M. and Dmitrieva, E.D., Aktual. Biotekhnol., 2020, no. 3(34), pp. 425–428.

    Google Scholar 

  86. Dmitrieva, E.D., Gertsen, M.M., and Gorelova, S.V., Khim. Rast. Syr’ya, 2019, no. 4, pp. 349–357. https://doi.org/10.14258/jcprm.2019045521

    Article  CAS  Google Scholar 

  87. Gertsen, M.M. and Dmitrieva, E.D., Khim. Rast. Syr’ya, 2020, no. 2, pp. 291–298. https://doi.org/10.14258/jcprm.2020025552

    Article  CAS  Google Scholar 

  88. Shagidullin, R.R., Latypova, V.Z., Ivanov, D.V., Petrov, A.M., Shagidullina, R.A., and Tarasov, O.Yu., Georesursy, 2011, no. 5(41), pp. 2–5.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of State Assignment (project no. FEWG-2020-0008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. D. Dmitrieva or V. I. Grinevich.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrieva, E.D., Grinevich, V.I. & Gertsen, M.M. Degradation of Oil and Petroleum Products by Biocompositions Based on Humic Acids of Peats and Oil-Degrading Microorganisms. Russ J Gen Chem 92, 2920–2930 (2022). https://doi.org/10.1134/S1070363222120453

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222120453

Keywords:

Navigation