Skip to main content
Log in

Fluorescent and Acid-Base Indicator Properties of Complexes Based on Sn(IV) Octaethylporphyrinate and Molecules of Dye: Phenolphthalein and 1,3,5,7-Tetramethyl-8-(4-hydroxyphenyl) (BODIPY)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Triads L–SNP–L, containing two ligands, phenolphthalein or 1,3,5,7-tetramethyl-8-(4-hydroxyphenyl)-4,4-difluoro-4-boron-3a,4a-diazaindacene (BODIPY), axially bound to Sn(IV)octaethylporphyrinate, were synthesized. The sensitivity of the obtained triads to changes in the acidity of the medium has been studied. Photoexcitation of the BODIPY-SnP-BODIPY triad leads to photoinduced energy transfer from the BODIPY donor fragments to the porphyrinate acceptor. When the triad is excited at the wavelength λexc = 490 nm, in addition to BODIPY fluorescence, fluorescence sensitized by the porphyrin fragment is recorded, and when the triad is excited at a wavelength λexc = 400 nm, porphyrinate fluorescence flares up compared to initial SnP. In the triad with phenolphthalein molecules, the fluorescent properties of both the ligand and porphyrinate are quenched, however, sensitivity to changes in the solution pH increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Scheme
Fig. 4.
Scheme
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Radunz, S., Wedepohl, S., Röhr, M., Calderón, M., Tschiche, H.R., and Resch-Genger, U., J. Med. Chem., 2020, vol. 63, no. 4, p. 1699. https://doi.org/10.1021/acs.jmedchem.9b01873

    Article  CAS  Google Scholar 

  2. Radunz, S., Kraus, W., Bischoff, F.A., Emmerling, F., Rune Tschiche, H., and Resch-Genger, U., J. Phys. Chem. A, 2020, vol. 124, no. 9, p. 1787. https://doi.org/10.1021/acs.jpca.9b11859

    Article  CAS  Google Scholar 

  3. Radunz, S., Andresen, E., Würth, Ch., Koerdt, A., Rune Tschiche, H., and Resch-Genger, U., Anal. Chem., 2019, vol. 91, no. 12, p. 7756. https://doi.org/10.1021/acs.analchem.9b01174

    Article  CAS  Google Scholar 

  4. Kadokawa, J., Suenaga, M., and Kaneko, Y., Chem. Lett., 2008, vol. 37, no. 12, p. 1232. https://doi.org/10.1246/cl.2008.1232

  5. Kaur, P. and Singh, K., J. Mater. Chem. C, 2019, vol. 7, p. 11361. https://doi.org/10.1039/C9TC03719E

  6. Salim, M.M., Owens, E.A., Gao, T., Lee, J.H., Hyun, H., Choi, H.S., and Henary, M., Analyst, 2014, vol. 139, p. 4862. https://doi.org/10.1039/C4AN01104J

    Article  CAS  Google Scholar 

  7. Ulrich, G., Ziessel, R., and Harriman, A., Angew. Chem. Int. Ed., 2008, vol. 47, no. 7, p. 1184. https://doi.org/10.1002/anie.200702070

    Article  CAS  Google Scholar 

  8. Li, X., Sun, S.S., Kim, I.J., and Son, Y.-A., Molec. Crys. Liquid Cryst., 2017, vol. 654, p. 131. https://doi.org/10.1080/15421406.2017.1358016

    Article  CAS  Google Scholar 

  9. Boens, N., Leen, V., and Dehaen, W., Chem. Soc. Rev., 2012, vol. 41, p. 1130. https://doi.org/10.1039/C1CS15132K

    Article  CAS  Google Scholar 

  10. Marfin, Y.S., Merkushev, D.A., and Usoltsev, S.D., J. Fluoresc., 2015, vol. 25, p. 1517. https://doi.org/10.1007/s10895-015-1643-9

    Article  CAS  Google Scholar 

  11. Bañuelos, J., Arbeloa, F.L., Arbeloa, T., Salleres, S., Vilas, J.L., Amat-Guerri, F., Liras, M., and Arbeloa, I.L., J. Fluoresc., 2008, vol. 18, p. 899. https://doi.org/10.1007/s10895-008-0320-7

    Article  CAS  Google Scholar 

  12. Gareis, Th., Huber, Ch., Wolfbeis, O.S., and Daub, J., Chem. Commun., 1997, p. 1717. https://doi.org/10.1039/A703536E

  13. Su, D., Teoh, Ch.L., Gao, N., Xu, Q.-H., and Chang, Y.-T., Sensors, 2016, vol. 16, no. 9, p. 1397. https://doi.org/10.3390/s16091397

    Article  CAS  Google Scholar 

  14. Zhu, H., Fan, J., Li, M., Cao, J., Wang, J., and Peng, X., Chem.–Eur. J., 2014, vol. 20, no. 16, p. 4691. https://doi.org/10.1002/chem.201304296

    Article  CAS  Google Scholar 

  15. Vyšniauskas, A., López-Duarte, I., Duchemin, N., Vu, Th.-T., Wu, Y., Budynina, E.M., Volkova, Y.A., Cabrera, E.P., Ramírez-Ornelas, D.E., and Kuimova, M.K., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 25252. https://doi.org/10.1039/C7CP03571C

    Article  Google Scholar 

  16. Perronet, K., Bouyer, P., Westbrook, N., Soler, N., Fourmy, D., and Yoshizawa, S., J. Lumin., 2007, vol. 127, no. 1, p. 264. https://doi.org/10.1016/j.jlumin.2007.02.051

    Article  CAS  Google Scholar 

  17. Nguyen, N.T., Verbelen, B., Leen, V., Waelkens, E., Dehaen, W., and Kruk, M., J. Lumin., 2016, vol. 179, p. 306. https://doi.org/10.1016/j.jlumin.2016.06.043

    Article  CAS  Google Scholar 

  18. Ji, D., Zhao, R., Huang, Zh., and Xia, A., J. Lumin., 2007, vols. 122–123, p. 253. https://doi.org/10.1016/j.jlumin.2006.01.128

    Article  CAS  Google Scholar 

  19. Stoll, L.K., Zgierski, M.Z., and Kozlowski, P.M., J. Phys. Chem. A, 2002, vol. 106, no. 1, p. 170. https://doi.org/10.1021/jp012416k

    Article  CAS  Google Scholar 

  20. Ivashin, N.V., Opt. Spectrosc., 2021, vol. 129, p. 935. https://doi.org/10.1134/S0030400X21070092

    Article  CAS  Google Scholar 

  21. Boguta, A. and Wróbel, D., J. Fluoresc., 2001, vol. 11, no. 2, p. 129. https://doi.org/10.1023/A:1016681502731:ehyfk

    Article  CAS  Google Scholar 

  22. Ciftci, G.Y., Durmus, M., Senkuytu, E., and Kilic, A., Spectrochim. Acta A, 2009, vol. 74, no. 4, p. 881. https://doi.org/10.1016/j.saa.2009.08.028

    Article  CAS  Google Scholar 

  23. Latterini, L., Elisei, F., Aloisi, G.G., Costantino, U., and Nocchetti, M., Phys. Chem. Chem. Phys., 2002, vol. 4, p. 2792. https://doi.org/10.1039/b201167k

    Article  CAS  Google Scholar 

  24. Babu, B., Mack, J., and Nyokong, T., Dalton Trans., 2020, vol. 49, p. 15180. https://doi.org/10.1039/D0DT03296D

    Article  CAS  Google Scholar 

  25. Babu, B., Mack, J., and Nyokong, T., New J. Chem., 2022, vol. 46, p. 5288. https://doi.org/10.1039/D2NJ00350C

    Article  CAS  Google Scholar 

  26. Huang, H., Chauhan, S., Geng, J., Qin, Y., Watson, D.F., and Lovell, J.F., Biomacromolecules, 2017, vol. 18, no. 2, p. 562. https://doi.org/10.1021/acs.biomac.6b01715

    Article  CAS  Google Scholar 

  27. Magaela, N.B., Balaji, R.M., Managa, B.M., Prinsloo, E., and Nyokong, T., Polyhedron, 2022, vol. 213, p. 115624. https://doi.org/10.1016/j.poly.2021.115624

    Article  CAS  Google Scholar 

  28. Babu, B., Soy, R.C., Mack, J., and Nyokong, T., New J. Chem., 2020, vol. 44, p. 11006. https://doi.org/10.1039/D0NJ01564D

    Article  CAS  Google Scholar 

  29. Ravikumarm, M., Raghavm, D., Rathinasamym, K., Kathiravanm,,, A., and Mothim, E.M., ACS Appl. Bio Mater., 2018, vol. 1, no. 5, p. 1705. https://doi.org/10.1021/acsabm.8b00507

    Article  CAS  Google Scholar 

  30. Likhonina, A.E., Mamardashvili, G.M., and Mamardashvili, N.Z., J. Photochem. Photobio. A: Chem., 2022, vol. 424, p. 113650. https://doi.org/10.1016/j.jphotochem.2021.113650

    Article  CAS  Google Scholar 

  31. Mamardashvili, G.M., Maltceva, O.V., Lazovskiya, D.A., Khodov, I.A., Borovkov, V., Mamardashvili, N.Zh., and Koifman, O.I., J. Molec. Liq., 2019, vol. 277, no. 1, p. 1047. https://doi.org/10.1016/j.molliq.2018.12.118

    Article  CAS  Google Scholar 

  32. Lazovskiy, D.A., Mamardashvili, G.M., Khodov, I.A., and Mamardashvili, N.Z., J. Photochem. Photobio. A: Chem., 2020, vol. 402, p. 112832. https://doi.org/10.1016/j.jphotochem.2020.112832

    Article  CAS  Google Scholar 

  33. Mamardashvili, G.M., Kaigorodova, E.Yu., Simonova, O.R., Lazovskiy, D.A., and Mamardashvili, N.Z., J. Molec. Liq., 2020, vol. 318, p. 113988. https://doi.org/10.1016/j.molliq.2020.113988

    Article  CAS  Google Scholar 

  34. Lazarides, T., Kuhri, S., Charalambidis, G., Panda, M.K., Guldi, D.M., and Coutsolelos, A.G., Inorg. Chem., 2012, vol. 51, p. 4193. https://doi.org/10.1021/ic2026472

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by a grant of the Russian Science Foundation (project no. 22-23-00018) with the use of equipment from the Upper Volga Regional Center for Physical and Chemical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Likhonina.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhonina, A.E., Bryksina, D.A. & Mamardashvili, N.Z. Fluorescent and Acid-Base Indicator Properties of Complexes Based on Sn(IV) Octaethylporphyrinate and Molecules of Dye: Phenolphthalein and 1,3,5,7-Tetramethyl-8-(4-hydroxyphenyl) (BODIPY). Russ J Gen Chem 92, 2786–2795 (2022). https://doi.org/10.1134/S1070363222120295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222120295

Keywords:

Navigation