Skip to main content
Log in

Computational, Equilibrium, Structural, and Biological Study of the Novel 1-Formyl-4-phenyl-3-semicarbazide and Its Complexes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Novel biologically active semicarbazide derivative 1-formyl-4-phenyl-3-semicarbazide was synthesized and characterized by LC-MS, IR, NMR, UV techniques. Geometrical optimization, the theoretical properties of six keto-enol forms of 1-formyl-4-phenyl-3-semicarbazide, like the free energy, entropy, dipole moment, electronic energy, the HOMO, LUMO were calculated using Gaussian 16W program. The dissociation constant of 1-formyl-4-phenyl-3-semicarbazide and ML formation constants of the complexes with cobalt(II), nickel(II), and cadmium(II) were calculated by Irving Rossetti titration technique at 30°C and 0.1 M. (KNO3) ionic strength in 70% (v/v) DMF–water medium. The stability constants of the complexes formed in solution with respect to metal ions followed the order of Ni(II) > Co(II) > Cd(II). Solid metal chelates of 1-formyl-4-phenyl-3-semicarbazide with biologically significant metal ions Co(II), Ni(II), Cu(II) and Cd(II) were synthesized. The structural and functional aspects of the synthesized compound were investigated using LC-MS, IR, NMR, UV, TGA, magnetic and conductivity study. The DNA-binding studies revealed the groove binding for Co(II) and Ni(II)-FPSC complexes and intercalative binding for Cu(II) complex with DNA. The docking of FPSC and its Co(II), Ni(II) complexes with DNA revealed groove binding whereas Cu(II) showed intercalation binding mode of interactions with DNA base pairs. The antimicrobial activity was studied using agar disc diffusion method against E. coli and B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Scheme
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sevim, R. and Gunizkucukguzet, S., Molecules, 2007, vol. 12, p. 1910. https://doi.org/10.3390/12081910

  2. Mydhili, S.P., Sireesha, B., and Venkata Ramana Reddy, Ch., Russ. J. Gen. Chem., 2019, vol. 89, p. 1015. https://doi.org/10.1134/S1070363219050232

    Article  CAS  Google Scholar 

  3. Cecily Mary Glory, D., Madivanane, R., and Sambathkumar, K., Elixir Comp. Chem., 2015, vol. 89, p. 36730.

    Google Scholar 

  4. Omar, M.M., Mohamed, G.G, and Ibrahim, A.A., Spect. Chimi. Acta (A), 2009, vol. 73, p. 358. https://doi.org/10.1016/j.saa.2009.02.043

    Article  CAS  Google Scholar 

  5. Abdel-Rahman, L.H., Abu-Dief, A.M., Shehata, M.R., Atlam, F.M., and Abdel-Mawgoud, A.A.H., Organomet. Chem., 2019, p. 33e4699. https://doi.org/10.1002/aoc.4699

  6. Abdel-Rahman, L.H., Abdelhamid, A.A., Abu-Dief, A.M., Shehata, M.R., and Bakheet, M.A., J. Mol. Struct., 2020, vol. 1200, p. 127034. https://doi.org/10.1016/j.molstruc.2019.127034

  7. Ramesh, G., Daravath, S., Ganji, N., Rambabu, A., Venkateswarlu, K., Shivaraj, J. Mol. Struct., 2020, vol. 1202, p. 127338. https://doi.org/10.1016/j.molstruc.2019.127338

  8. Franklin, R.E. and Gosling, R.G., Nature, 1953, vol. 172, p. 156. https://doi.org/10.1038/172156a0

    Article  CAS  Google Scholar 

  9. Franklin, R.E. and Gosling, R.G, Nature, 1953, vol. 171, p. 740. https://doi.org/10.1021/acs.jpcb.6b02155

    Article  CAS  Google Scholar 

  10. Watson, J.D. and Crick, F.H., Nature, 1953, vol. 171, p. 737. https://doi.org/10.1038/171737a0

    Article  CAS  Google Scholar 

  11. Liu, J.G., Ye, B.H., Li, H., Zhen, Q.X., Ji, L.N., and Fu, Y.H., J. Inorg. Biochem., 1999, vol. 76, p. 265. https://doi.org/10.1016/S0162-0134(99)00154-3

  12. Eckel, R., Ros, R., Ros, A., Wilking, S.D., Sewald, N., and Anselmetti, D., Biophys. J., 2003, vol. 85, p. 1968. https://doi.org/10.1016/S0006-3495(03)74624-4

    Article  CAS  Google Scholar 

  13. Krautbauer, R., Pope, L.H., Schrader, T.E., Allen, S., and Gaub, H.E., FEBS Lett., 2002, vol. 510 p. 154. https://doi.org/10.1016/S0014-5793(01)03257-4

    Article  CAS  Google Scholar 

  14. Chen, L.M., Liu, J., Chen, J.C., and Shi, S., J. Mol. Struct., 2008, vol. 881, p. 156. https://doi.org/10.1016/j.molstruc.2007.09.010

    Article  CAS  Google Scholar 

  15. Pucci, D., Bellini, T., Crispini, A., D’Agnano, I., Liguori, P.F., Garcia-Orduna, P., Pirillo, S., Valentinid, A., and Zanchetta, G., Med. Chem. Commun., 2012, vol. 3, p. 462. https://doi.org/10.1039/C2MD00261B

    Article  CAS  Google Scholar 

  16. Paramanathan, T., Mc Cauley, M., and Williams, M.C., in Methods for Studying Nucleic Acids/Drug Interactions, Wanunu, M. and Tor, Y., eds., Boca Raton: CRC Press, 2012, p. 135.

  17. Vijesh, A.M., Isloor Arun, M., Sandeep, T., Arulmoli, M., and Hoong-Kun, Fun., Arab. J. Chem., 2013, vol. 6, p. 197. https://doi.org/10.1016/j.arabjc.2011.10.007

    Article  CAS  Google Scholar 

  18. Raman, N. and Dhaveethu Raja, J., Ind. J. Chem. (A), 2007, vol. 46, N 10, p. 1611.

    Google Scholar 

  19. Nayan, R. and Dey, A. K., Ind. J. Chem., 1972, vol. 10, p. 109.

    CAS  Google Scholar 

  20. Chandrathilaka A.M.D.S., Oliver Ileperuma, and Champika Hettiarachchi V., J. Nat. Sci. Found. Sri Lanka, 2013. https://doi.org/10.4038/jnsfsr.v41i4.6253

  21. Irving and Williams, Nature, 1948, vol. 162, p. 746. https://doi.org/10.1038/162746a0

  22. Mellor, D.P., and Maley, L., Nature, 1948, vol. 162, p. 436. https://doi.org/10.1038/161436b0

  23. Bhargavi, G., Sireesha, B., and Sarala Devi, Ch., Proc. Indian Acad. Sci. (Chem Sci.), 2003, vol. 115(1), p. 23.

  24. Janrao, D.M., Pathan, J., Kayande, D.D., and Jabber Mulla, J., Sci. Revs. Chem. Commun., 2014, vol. 4(1), p. 11. https://doi.org/10.30731/ijcps.7.3.2018.81-87

  25. Sireesha, B., Sarala Devi, Ch., Rafeeq, M., and Ram Reddy, M G., J. Indian Chem. Soc., 1999, vol. 76(10), p. 498. https://doi.org/10.5281/zenodo.5860956

  26. Srinivas Reddy, G., Sireesha, B., Sarala Devi, Ch., Rafeeq Mohiuddin, Gyana Kumari, C., and Ram Reddy, M.G., J. Indian Chem. Soc., 1998, vol. 75, p. 20.

    Google Scholar 

  27. Nakamoto, K., IR Spectra of Inorganic and Coordination Compounds, New York: John Wiley and Sons., 2006, https://doi.org/10.1002/0470027320.s4104

  28. Lever, A.B.P., Inorg. Electron. Spectros., 1984, p. 448. https://doi.org/10.1002/bbpc.19850890122

  29. Chohan, Z.H., Arif M., Akhtar, M., and Clandir, T., Bioinorg. Chem. Appl., 2006, vol. 2006, Article ID83131. https://doi.org/10.1155/BCA/2006/83131

  30. Lever, A.B.P., Inorganic Electronic Spectroscopy, New York: Elsevier, 1985, p. 33. https://doi.org/10.1002/bbpc.19850890122

  31. Drago, R.S., Physical Methods for Chemists, Philadelphia: Saunders College Pub., 1992.

  32. Gangadhar, B., Badami, P.S., and Patil, S.A., J. Enzym. Inhibit. Med. Chem., 2009, vol 24, no. 2, p. 381. https://doi.org/10.1080/14756360802187901

  33. El-Shahawi, M.S., Al-Jahdali, M.S., Bashammakh, A.S., Al-Sibaai, A.A., and Nassef, H.M., Spectrochim. Acta (A), 2013, vol. 113, p. 459. https://doi.org/10.1016/j.saa.2013.04.090

  34. Buldurun, K., Turan, N., and Bursal, E., Res. Chem. Intermed., 2020, vol. 46, p. 283. https://doi.org/10.1007/s11164-019-03949-3

    Article  CAS  Google Scholar 

  35. Kavitha, N., and Anantha Lakshmi, P.V., J. Mol. Struct., 2019, vol. 1176, p. 798. https://doi.org/10.1016/j.molstruc.2018.09.042

  36. Vasantha, P., Sathish Kumar, B., Shekhar, B., and Anantha Lakshmi, P.V., Mater. Sci. Eng. (C), 2018, vol. 90, p. 621. https://doi.org/10.1016/j.msec.2018.04.052

    Article  CAS  Google Scholar 

  37. Kannan, D., and Arumugham, M.N., Int. J. Inorg. Bioinorg. Chem., 2013, vol. 3(1), p. 8. https://doi.org/10.1155/2013/108740

    Article  CAS  Google Scholar 

  38. Sudhamani, C.N., BhojyaNaik, H.S., Ravikumar Naik, T.R., and Prabhakara, M.C., Spectrochim. Acta (A), 2009, vol. 72, p. 643. https://doi.org/10.1016/j.saa.2008.11.025

    Article  CAS  Google Scholar 

  39. Mydhili, S.P., Sireesha, B., and Venkata Ramana Reddy, Ch., Heteroatom Chem., 2019, vol. 11, p. 1. https://doi.org/10.1155/2019/3507837

  40. Venkateshwarlu, K., Ganji, N., Daravath, S., Kannebina, K., Rangan, K., and Shivaraj, Polyhedron, 2019, vol. 171, p. 86. https://doi.org/10.17344/acsi.2020.5817

    Article  CAS  Google Scholar 

  41. Almaqwashi Ali, A., Paramanathan T., Rouzina I., and Williams, Mark C., Nucl. Acids Res., 2016, https://doi.org/10.1093/nar/gkw237

  42. Shahabadi, N. and Heidari, L., Spectrochim. Acta (A), 2014, vol. 128, p. 377. https://doi.org/10.1016/j.saa.2014.02.167

    Article  CAS  Google Scholar 

  43. Arjmand, F., and Sayeed, F., J. Mol. Struct., 2010, vol. 965, p. 14. https://doi.org/10.1016/j.molstruc.2009.11.025

    Article  CAS  Google Scholar 

  44. Sharma, S., Singh, S., Chandra, K.M., and Pandey, D.S., J. Inorg. Biochem., 2005, vol. 99, p. 458. https://doi.org/10.1016/j.jinorgbio.2004.10.021

    Article  CAS  Google Scholar 

  45. Zhang, Q.L., Liu, J.G., Liu, J., and Xue, G.Q., J. Inorg. Biochem., 2001, vol. 85, p. 291. https://doi.org/10.1016/s0162-0134(01)00212-4

    Article  CAS  Google Scholar 

  46. Inci, D., Aydin, R., Sevgi, T., Zorlu, Y., and Demirkan, E., J. Coord. Chem., 2017, vol. 70, p. 512. https://doi.org/10.1080/00958972.2016.1267729

  47. Krishnamoorthy, P., Sathyadevi, P., Cowley, A.H., Butorac, R. R., and Dharmaraj, N., Eur. J. Med. Chem., 2011, vol. 46, p. 3376. https://doi.org/10.1016/j.ejmech.2011.05.001

    Article  CAS  Google Scholar 

  48. Saritha, A., Venkata Ramana Reddy, Ch., and Sireesha, B., Vietnam J. Chem., 2021, vol. 59, no. 1, p. 57. https://doi.org/10.1002/vjch.20200010

  49. Saha, S., Mazumder, R., Roy, M., Dighe, R.R., and Chakravarty, Inorg. Chem., 2009, vol. 48, p. 2652. https://doi.org/10.1021/ic8022612

  50. Kavitha, R., Venkata Ramana Reddy, Ch., and Sireesha, B., Nucleosides, Nucleotides & Nucleic Acids, 2021, vol. 40, no. 8, p. 845.

    Article  CAS  Google Scholar 

  51. Wang, B.D., Yang, Z.Y., Crewdson, P., and Wang, D.Q., J. Inorg. Biochem., 2007, vol. 101, p. 1492. https://doi.org/10.1016/j.jinorgbio.2007.04.007

    Article  CAS  Google Scholar 

  52. Joseyphus, R.S. and Nair, M.S., Arabian J. Chem., 2010, vol. 3, p. 195. https://doi.org/10.1016/j.arabjc.2010.05.001

  53. Sireesha, B., Sarala Devi, Ch., and Raghavaiah, P., Indian J. Chem. (B), 2008, vol. 47, p. 592.

    Google Scholar 

  54. Aliya, B., Aparna, A.V., Sireesha, B., Sarala Devi, Ch., and Raghavaiah, P., Indian J. Chem. (B), 2009, vol. 48, no. 11, p. 1565.

    Google Scholar 

  55. Hossain, M.I., Kumer, A., and Begum, S.H., Asian J. Phys. Chem. Sci., 2018, vol. 3, p. 1. https://doi.org/10.9734/AJOPACS/2018/39148

  56. Schwarzenbach, G., and Flaschka, H., Complexometric Titrations, London: Methuen and Co., 1999.

  57. Irving H.M. and Rossetti H.S., J. Chem. Soc., 1954, p. 2904. https://doi.org/10.1039/jr9540002904

  58. Ram, K., Reddy, M.G.R., Sethuram, B., Rao, T.N., and Kumar, V.V., Indian J. Chem. (A), 1982, vol. 21, no. 7, p. 748.

    Google Scholar 

  59. Madhumita, H., Tanushree, D., Akhil, P., Subrata Kumar, D., and Animesh, P., Bioinorg. Chem. Appl., 2014, vol. 2014, p. 1. https://doi.org/10.1155/2014/104046

    Article  CAS  Google Scholar 

  60. Kavitha, B., Sravanthi, M., and Saritha Reddy, P., Appl. Organometal. Chem., 2021, vol. 36, p. 1. https://doi.org/10.1002/aoc.6451

    Article  CAS  Google Scholar 

  61. Rambabu, A., Ganji, N., Daravath, S., Shanker, D.S., Rangan, K., and Shivaraj, J. Mol. Struct., 2020, vol. 1199, p. 127006. https://doi.org/10.1016/j.molstruc.2019.127006

  62. Searle, M.S., Maynard, A.J., and Williams, H.E., Org. Biomol. Chem., 2003, vol. 1, no. 1, p. 60. https://doi.org/10.1039/B208622K

    Article  CAS  Google Scholar 

  63. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell D.S., and Olson, A.J., J. Comput. Chem., 2009, vol. 16, p. 2785. https://doi.org/10.1002/jcc.21256

  64. Sanner M.F., J. Mol. Graphics Mod., 1999, vol 17, p. 57.

  65. Atta-ur-Rehman, Choudhary, M.I., and Thomsen, W.J., Bioassay Techniques for Drugs Development, London: CRC Press, 2001. https://doi.org/10.3109/9780203304532

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Department of Chemistry, Osmania University for providing research facilities and funding in DST-Purse programme II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sireesha.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, A., Kanth, S.S. & Sireesha, B. Computational, Equilibrium, Structural, and Biological Study of the Novel 1-Formyl-4-phenyl-3-semicarbazide and Its Complexes. Russ J Gen Chem 92, 2708–2722 (2022). https://doi.org/10.1134/S1070363222120210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222120210

Keywords:

Navigation