Skip to main content
Log in

Crystal Structure of the Organonickel Sigma Complex [NiBr(Tcpp)(bpy)]

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The low-stable organonickel sigma-complex (2,2'-bipyridyl)bromo(2,4,6-tricyclopentylphenyl)nickel(II) [NiBr(Tcpp)(bpy)] was obtained by a modified procedure of preparative electrochemical synthesis and isolation. The crystal structure of the resulting organonickel complex was determined by the X-ray diffraction method. Its structure was compared with that of its more stable analogue [NiBr(Tchp)(bpy)], where Tchp is 2,4,6-tricyclohexylphenyl. It was found that a more efficient network of intermolecular interactions is formed in the [NiBr(Tchp)(bpy)] crystal, which is responsible for its higher stability, whereas [NiBr(Tcpp)(bpy)] is more likely to enter into an equilibrium Schlenk reaction, leading to its decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Diccianni, J., Lin, Q., and Diao, T., Acc. Chem. Res., 2020, vol. 53, no. 4, p. 906. https://doi.org/10.1021/acs.accounts.0c00032

    Article  CAS  Google Scholar 

  2. Chernyshev, V.M. and Ananikov, V.P., ACS Catal., 2022, vol. 12, no. 2, p. 1180. https://doi.org/10.1021/acscatal.1c04705

    Article  CAS  Google Scholar 

  3. Rodríguez, A. and García-Vázquez, J.A., Coord. Chem. Rev., 2015, vol. 303, p. 42. https://doi.org/10.1016/j.ccr.2015.05.006

    Article  CAS  Google Scholar 

  4. Khrizanforov, M., Strekalova, S., Khrizanforova, V., Grinenko, V., Kholin, K., Kadirov, M., Burganov, T., Gubaidullin, A., Gryaznova, T., Sinyashin, O., Xu, L., Vicic, D.A., and Budnikova, Y., Dalton Trans., 2015, vol. 44, no. 45, p. 19674. https://doi.org/10.1039/c5dt03009a

    Article  CAS  Google Scholar 

  5. Mills, L.R., Graham, J.M., Patel, P., and Rousseaux, S.A.L., J. Am. Chem. Soc., 2019, vol. 141, no. 49, p. 19257. https://doi.org/10.1021/jacs.9b11208

    Article  CAS  Google Scholar 

  6. Lombardi, L., Cerveri, A., Giovanelli, R., Castiñeira, Reis M., Silva-Lopez, C., Beertuzzi, G., and Bandini, M., Angew. Chem., 2022, p. e202211732. https://doi.org/10.1002/ange.202211732

  7. Zhang, G., Miao, H., Guan, C., and Ding, C., J. Org. Chem., 2022, vol. 2022, p. 12791. https://doi.org/10.1021/acs.joc.2c01401

    Article  CAS  Google Scholar 

  8. Boehm, P., Müller, P., Finkelstein, P., RiveroCrespo, M.A., Ebert, M.O., Trapp, N., and Morandi, B., J. Am. Chem. Soc., 2022, vol. 144, no. 29, p. 13096. https://doi.org/10.1021/jacs.2c01595

    Article  CAS  Google Scholar 

  9. Hu, J., Du, Q., Zhao, Y., Zhang, F., Chen, R., Zhou, J.S., and Wu, X., Org. Lett., 2022, vol. 24, no. 24, p. 4328. https://doi.org/10.1021/acs.orglett.2c01360

    Article  CAS  Google Scholar 

  10. Savka, R. and Plenio, H., Eur. J. Inorg. Chem., 2014, vol. 2014, no. 36, p. 6246. https://doi.org/10.1002/ejic.201402830

    Article  CAS  Google Scholar 

  11. Wang, L., Lu, Y., Zhang, L., Fang, H., Zhang, X., and Li, Y., J. Organomet. Chem., 2022, vol. 975, p. 122434. https://doi.org/10.1016/j.jorganchem.2022.122434

    Article  CAS  Google Scholar 

  12. Chakravorti, M.C. and Subrahmanyam, G.V.B., Coord. Chem. Rev., 1994, vols. 135–136, p. 65. https://doi.org/10.1016/0010-8545(94)80065-0

    Article  Google Scholar 

  13. Kaur, N. and Kaur, G., Mater. Today Proc., 2021, vol. 48, p. 1283. https://doi.org/10.1016/j.matpr.2021.08.288

    Article  CAS  Google Scholar 

  14. Pourmorteza, N., Jafarpour, M., Feizpour, F., and Rezaeifard, A., RSC Adv., 2022, vol. 12, no. 8, p. 4931. https://doi.org/10.1039/d1ra07252h

    Article  CAS  Google Scholar 

  15. Völler, J.S., Nat. Catal., 2022, vol. 5, no. 9, p. 748. https://doi.org/10.1038/s41929-022-00849-5

    Article  Google Scholar 

  16. Wu, K., Wu, C., Jia, X.Y., Zhou, L., and Li, Q.H., RSC Adv., 2022, vol. 12, no. 21, p. 13314. https://doi.org/10.1039/d2ra02127g

    Article  CAS  Google Scholar 

  17. Mills, L.R., Edjoc, R.K., and Rousseaux, S.A.L., J. Am. Chem. Soc., 2021, vol. 143, no. 27, p. 10422. https://doi.org/10.1021/jacs.1c05281

    Article  CAS  Google Scholar 

  18. Gordeychuk, D.I., Sorokoumov, V.N., Mikhaylov, V.N., Panov, M.S., Khairullina, E.M., Melnik, M.V., Kochemirovsky, V.A., and Balova, I.A., Chem. Eng. Sci., 2020, vol. 227, p. 115940. https://doi.org/10.1016/j.ces.2020.115940

    Article  CAS  Google Scholar 

  19. Artem’ev, A.V., Malysheva, S.F., Gusarova, N.K., Belogorlova, N.A., Sukhov, B.G., Sutyrina, A.O., Matveeva, E.A., Vasilevsky, S.F., Govdi, A.I., Gatilov, Y.V., Albanov, A.I., and Trofimov, B.A., Tetrahedron, 2016, vol. 72, no. 4, p. 443. https://doi.org/10.1016/j.tet.2015.11.009

    Article  CAS  Google Scholar 

  20. Trofimov, B.A., Stepanova, Z. V., Sobenina, L.N., Mikhaleva, A.I., and Ushakov, I.A., Tetrahedron Lett., 2004, vol. 45, no. 34, p. 6513. https://doi.org/10.1016/j.tetlet.2004.06.114

    Article  CAS  Google Scholar 

  21. Artem’ev, A.V., Kuimov, V.A., Matveeva, E.A., Bagryanskaya, I.Y., Govdi, A.I., Vasilevsky, S.F., Rakhmanova, M.I., Samultsev, D.O., Gusarova, N.K., and Trofimov, B.A., Inorg. Chem. Commun., 2017, vol. 86, p. 94. https://doi.org/10.1016/j.inoche.2017.09.008

    Article  CAS  Google Scholar 

  22. Wassenaar, J., Jansen, E., Van Zeist, W.J., Bickelhaupt, F.M., Siegler, M.A., Spek, A.L., and Reek, J.N.H., Nat. Chem., 2010, vol. 2, no. 5, p. 417. https://doi.org/10.1038/nchem.614

    Article  CAS  Google Scholar 

  23. Yan, Y., Sun, J., Li, G., Yang, L., Zhang, W., Cao, R., Wang, C., Xiao, J., and Xue, D., Org. Lett., 2022, vol. 24, no. 12, p. 2271. https://doi.org/10.1021/acs.orglett.2c00203

    Article  CAS  Google Scholar 

  24. Gafurov, Z.N., Kantyukov, A.O., Kagilev, A.A., Sinyashin, O.G., and Yakhvarov, D.G., Coord. Chem. Rev., 2021, vol. 442, p. 213986. https://doi.org/10.1016/j.ccr.2021.213986

    Article  CAS  Google Scholar 

  25. Gafurov, Z.N., Kagilev, A.A., Kantyukov, A.O., Sinyashin, O.G., and Yakhvarov, D.G., Coord. Chem. Rev., 2021, vol. 438, p. 213889. https://doi.org/10.1016/j.ccr.2021.213889

    Article  CAS  Google Scholar 

  26. Sakhapov, I.F., Gafurov, Z.N., Babaev, V.M., Rizvanov, I.K., Dobrynin, A.B., Krivolapov, D.B., Khayarov, K.R., Sinyashin, O.G., and Yakhvarov, D.G., Mendeleev Commun., 2016, vol. 26, no. 2, p. 131. https://doi.org/10.1016/j.mencom.2016.03.016

    Article  CAS  Google Scholar 

  27. Gafurov, Z.N., Sakhapov, I.F., Babaev, V.M., Dobrynin, A.B., Kurmaz, V.A., Metlushka, K.E., Rizvanov, I.K., Shaikhutdinova, G.R., Sinyashin, O.G., and Yakhvarov, D.G., Russ. Chem. Bull., 2017, vol. 66, no. 2, p. 254. https://doi.org/10.1007/s11172-017-1725-8

    Article  CAS  Google Scholar 

  28. Sakhapov, I.F., Gafurov, Z.N., Kantyukov, A.O., Kagilev, A.A., Mikhailov, I.K., Zueva, E.M., Buzyurova, D.N., Babaev, V.M., Shteingolts, S.A., Fayzullin, R.R., Bekmukhamedov, G.E., and Yakhvarov, D.G., Russ. J. Electrochem., 2022. https://doi.org/10.31857/S0424857022120064

  29. Yakhvarov, D.G., Petr, A., Kataev, V., Büchner, B., Gómez-Ruiz, S., Hey-Hawkins, E., Kvashennikova, S.V., Ganushevich, Y.S., Morozov, V.I., and Sinyashin, O.G., J. Organomet. Chem., 2014, vol. 750, p. 59. https://doi.org/10.1016/j.jorganchem.2013.11.003

    Article  CAS  Google Scholar 

  30. Yakhvarov, D.G., Khusnuriyalova, A.F., and Sinyashin, O.G., Organometallics, 2014, vol. 33, no. 18, p. 4574. https://doi.org/10.1021/om500100q

    Article  CAS  Google Scholar 

  31. Yakhvarov, D.G., Trofimova, E.A., Rizvanov, I.K., Fomina, O.S., and Sinyashin, O.G., Russ. J. Electrochem., 2011, vol. 47, no. 10, p. 1100. https://doi.org/10.1134/S1023193511100247

    Article  CAS  Google Scholar 

  32. Quisenberry, K.T., Smith, J.D., Voehler, M., Stec, D.F., Hanusa, T.P., and Brennessel, W.W., J. Am. Chem. Soc., 2005, vol. 127, no. 12, p. 4376. https://doi.org/10.1021/ja044308s

    Article  CAS  Google Scholar 

  33. Uchino, M., Asagi, K., Yamamoto, A., and Ikeda, S., J. Organomet. Chem., 1975, vol. 84, no. 1, p. 93. https://doi.org/10.1016/S0022-328X(00)88778-1

    Article  CAS  Google Scholar 

  34. Agilent. CrysAlis PRO, Agilent Technologies Ltd, 2014.

  35. Sheldrick, G.M., Acta Crystallogr. A, 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  36. Sheldrick, G.M., Acta Crystallogr. A, 2008, vol. 64, no. 1, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  37. Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., and Van De Streek, J., J. Appl. Crystallogr., 2006, vol. 39, no. 3, p. 453. https://doi.org/10.1107/S002188980600731X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Mass spectrometric studies and elemental analysis were performed on the equipment of the Spectro-Analytical Center of the Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences.”

Funding

The work was carried out with the financial support of the Russian Science Foundation (project no. 21-73-00136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Yakhvarov.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

To the 145th anniversary of A.E. Arbuzov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagilev, A.A., Gafurov, Z.N., Sakhapov, I.F. et al. Crystal Structure of the Organonickel Sigma Complex [NiBr(Tcpp)(bpy)]. Russ J Gen Chem 92, 2659–2665 (2022). https://doi.org/10.1134/S1070363222120155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222120155

Keywords:

Navigation