Skip to main content
Log in

Facile Synthesis of Biocompatible Amine Oxide Grafted Fullerene and Its Antioxidant Performances without Metal Loading

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Fullerene (C60) has been regarded as an effective radical scavenger for many years, but the highly hydrophobic nature strongly limits its application in biological fields. Herein, a simple and green strategy for synthesizing water-soluble fullerene derivative was reported, in which intrinsic C60 was grafted by amine oxide functional group (AO-C60). In addition to its excellent aqueous dispersion, AO-C60 exhibited extremely low toxicity to mice macrophage cell RAW264.7. Further experiments have confirmed the prominent antioxidative ability of AO-C60 towards typical free radicals including 1,1-diphenyl-2-picrylhydrazy (DPPH) radical, hydroxyl radical (OH) and nitric oxide (NO) without the help of metal loading, while the IC50 could be as low as 0.09 mg/mL. Our work will shed light on the development of anti-oxidative nanoagents with both effectiveness and bio-safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yu, C., Bhonsle, J.B., Wang, L.Y., Lin, J.G., Chen, B.J., and Chiang, L.Y., Fullerene Sci. Technol., 1997, vol. 5, p. 1407. https://doi.org/10.1080/15363839708013329

  2. Yang, Y., Li, P., and Li, S.-H., J. Struct. Chem., 2020, vol. 61, p. 1124. https://doi.org/10.1134/s0022476620070161

  3. Engineer, A., Saiyin, T., Greco, E.R., and Feng, Q., Antioxidants, 2019, vol. 8, p. 436. https://doi.org/10.3390/antiox8100436

    Article  CAS  Google Scholar 

  4. Byelinska, I.V., Kuznietsova, H.M., Dziubenko, N.V., Lynchak, O.V., Rybalchenko, T.V., Prylutskyy, Y.I., Kyzyma, O.A., Ivankov, O., Rybalchenko, V.K., and Ritter, U., Mater. Sci. Eng. C, 2018, vol. 93, p. 505. https://doi.org/10.1016/j.msec.2018.08.033

    Article  CAS  Google Scholar 

  5. Zhai, J.B., Jiang, L.H., and Jiang, Y., J. Struct. Chem., 2020, vol. 61, p. 1103. https://doi.org/10.1134/s0022476620070136

  6. Ali, S.S., Ahsan, H., Zia, M.K., Siddiqui, T., and Khan, F.H., J. Food Biochem., 2020, vol. 44, p. 1. https://doi.org/10.1111/jfbc.13145

  7. Farooq, S., Abdullah, H.Zh., and Weiss, J.A., Compr. Rev. Food Sci. Food Saf., 2021, vol. 20(5), p. 4250. https://doi.org/10.1111/1541-4337.12792

  8. Oliver, S., Yee, E., Kavallaris, M., Vittorio, O., and Boyer, C., Macromol. Biosci., 2018, vol. 18, p. 1. https://doi.org/10.1002/mabi.201700239

  9. Magangana, T.P., Makunga, N.P., Fawole, O.A., and Opara, U.L., Processes, 2021, vol. 9(6), p. 1. https://doi.org/10.3390/pr9061012

    Article  CAS  Google Scholar 

  10. Valgimigli, L., Baschieri, A., and Amorati, R., J. Mater. Chem. B, 2018, vol. 6, p., 2036. https://doi.org/10.1039/c8tb00107c

  11. Sozarukova, M.M., Shestakova, M.A., Teplonogova, M.A., Izmailov, D.Y., Proskurnina, E.V., and Ivanov, V.K., Russ. J. Inorg. Chem., 2020, vol. 65, p. 597. https://doi.org/10.1134/s0036023620040208

    Article  CAS  Google Scholar 

  12. Wang, J., Enevold, J., and Edman, L., Adv. Funct. Mater., 2013, vol. 23, p. 3220. https://doi.org/10.1002/adfm.201203386

    Article  CAS  Google Scholar 

  13. Hou, W.C. and Huang, S.H., J. Hazard. Mater., 2017, vol. 322, p. 310. https://doi.org/10.1016/j.jhazmat.2016.04.050

  14. Williams, D.E., Dolgopolova, E.A., Godfrey, D.C., Ermolaeva, E.D., Pellechia, P.J., Greytak, A.B., Smith, M.D., Avdoshenko, S.M., Popov, A.A., and Shustova, N.B., Angew. Chem. Int. Ed., 2016, vol. 55, p. 9070. https://doi.org/10.1002/anie.201603584

  15. Heredia, D.A., Durantini, A.M., Durantini, J.E., and Durantini, E.N., J. Photochem. Photobiol. C, 2021, vol. 51, p. 100471. https://doi.org/10.1016/j.jphotochemrev.2021.100471

    Article  CAS  Google Scholar 

  16. Kraevaya, O.A., Peregudov, A.S., Troyanov, S.I., Godovikov, I., Fedorova, N.E., Klimova, R.R., Sergeeva, V.A., Kameneva, L.V., Ershova, E.S., Martynenko, V.M., Claes, S., Kushch, A.A., Kostyuk, S.V., Schols, D., Shestakov, A.F., and Troshin, P.A., Org. Biomol. Chem., 2019, vol. 17, p. 7155. https://doi.org/10.1039/c9ob00593e

  17. Xu, B., Yuan, L., Hu, Y., Xu, Z., Qin, J., and Cheng, X.D., Front. Pharmacol., 2021, vol. 11, p. 598155. https://doi.org/10.3389/fphar.2020.598155

  18. Harhaji, L., Isakovic, A., Raicevic, N., Markovic, Z., Todorovic-Markovic, B., Nikolic, N., Vranjes-Djuric, S., Markovic, I., and Trajkovic, V., Eur. J. Pharmacol., 2007, vol. 568, p. 89. https://doi.org/10.1016/j.ejphar.2007.04.041

  19. Lee, K.C., Chen, Y.L., Wang, C.C., Huang, J.H., and Cho, E.C., ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 311. https://doi.org/10.1021/acsami.8b18253

  20. Liu, S., Chen, D., Li, X., Guan, M., Zhou, Y., Li, L., Jia, W., Zhou, C., Shu, C., Wang, C., and Bai, C., Nanoscale., 2020, vol. 12, p. 17470. https://doi.org/10.1039/d0nr04401f

  21. Lee, C.W., Su, Y.H., Chiang, Y.C., Lee, I.T., Li, S.Y., Lee, H.C., Hsu, L.F., Yan, Y.L., Li, H.Y., Chen, M.C., Peng, K.T., and Lai, C.H., Biomolecules, 2020, vol. 10(4), p. 514. https://doi.org/10.3390/biom10040514

  22. Li, T., Xiao, L., Yang, J., Ding, M., Zhou, Z., LaConte, L., Jin, L., Dorn, H.C., and Li, X., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 17681. https://doi.org/10.1021/acsami.7b04718

  23. Wang, Y., Cao, J., Schuster, D.I., and Wilson, S.R.A., Tetrahedron Lett., 1995, vol. 36, p. 6843. https://doi.org/10.1016/0040-4039(95)01443-l

  24. Cataldo, F. and Ros, T.D., Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, 1st ed., Springer, 2008.

  25. Torres, V.M., Posa, M., Srdjenovic, B., and Simplício, A.L., Colloids Surf. B., 2011, vol. 82, p. 46. https://doi.org/10.1016/j.colsurfb.2010.08.012

  26. Wan, J., Ma, J., Zhang, Y., Xia, Y., Hong, L., and Yang, C., New J. Chem., 2021, vol. 45, p. 17660. https://doi.org/10.1039/d1nj03132e

  27. Chen, M., Yin, K., Zhang, G., Liu, H., Ning, B., Dai, Y., Wang, X., Li, H., and Hao, J., ACS Appl. Bio Mater., 2020, vol. 3, p. 358. https://doi.org/10.1021/acsabm.9b00857

  28. Zheng, B., Ouyang, M., Dong, Y., Yu, H., Yi, J., and Zhang, R., Hans J. Chem. Eng. Technol., 2019, vol. 9, p. 73.

  29. Singh, S.K., Bajpai, M., and Tyagi, V.K., J. Oleo Sci., 2006, vol. 55, p. 99. https://doi.org/10.5650/jos.55.99

  30. Beyer, K. and Klingenberg, M., Biochem., 1978, vol. 17, p. 1424. https://doi.org/10.1021/bi00601a010

  31. Fabozzi, A., Krauss, I., Vitiello, R., Fornasier, M., Sicignano, L., King, S., Guido, S., Jones, C., Paduano, L., Murgia, S., and D’Errico, G., J. Colloid Interface Sci., 2019, vol. 552, p. 448. https://doi.org/10.1016/j.jcis.2019.05.052

  32. Bulgakov, R.G. and Kinzyabaeva, Z.S., Russ. J. Org. Chem., 2014, vol. 50, p. 762. https://doi.org/10.1134/s1070428014050273

  33. Meng, X., Xia, C., Ye, Q., and Nie, X., Food Funct., 2020, vol. 11, p. 4193. https://doi.org/10.1039/d0fo00281j

  34. Zhao, M., Wang, C., Xie, J., Ji, C., and Gu, Z., Small., 2021, vol. 17, p. 2102035. https://doi.org/10.1002/smll.202102035

  35. Hong, L., Li, J., Liu, F., Huang, S., Zheng, B., Ma, X., Zhang, Q., Zhao, B., and Yang, C., Colloids Surf. A, 2020, vol. 596, p. 124722. https://doi.org/10.1016/j.colsurfa.2020.124722

  36. Singh, R. and Goswami, T., Synth. Met., 2007, vol. 157, p. 951. https://doi.org/10.1016/j.synthmet.2007.09.006

  37. Ren, Z., Xu, X., Wang, X., Gao, B., Yue, Q., Song, W., Zhang, L., and Wang, H., J. Colloid Interface Sci., 2016, vol. 468, p. 313. https://doi.org/10.1016/j.jcis.2016.01.079

  38. Christensen, M.M., Ernst, E., and Ellermanneriksen, S., Arch. Toxicol., 1992, vol. 66, p. 347. https://doi.org/10.1007/bf01973630

    Article  CAS  Google Scholar 

  39. Afreen, S., Kokubo, K., Muthoosamy, K., and Manickam, S., RSC Adv., 2017, vol. 7, p. 31930. https://doi.org/10.1039/c7ra03799f

  40. Corres, M.A., Zubitur, M., Cortazar, M., and Múgica, A., J. Anal. Appl. Pyrolysis., 2011, vol. 92, p. 407. https://doi.org/10.1016/j.jaap.2011.08.002

  41. Dufaure, C., Thamrin, U., and Mouloungui, Z., Thermochim. Acta. 1999, vol. 338, p. 77. https://doi.org/10.1016/s0040-6031(99)00177-x

  42. Vandrovcoya, M., Vacik, J., Svorcik, V., Slepicka, P., Kasalkova, N., Vorlicek, V., Lavrentiev, V., Vosecek, V., Grausova, L., Lisa, V., and Bacakova, L., Phys. Stat. Sol., 2008, vol. 205, p. 2252. https://doi.org/10.1002/pssa.200879730

  43. Levi, N., Hantgan, R.R., Lively, M.O., Carroll, D.L., and Prasad, G.L., J. Nanobiotechnol., 2006, vol. 4, p. 1. https://doi.org/10.1186/1477-3155-4-14

  44. Geng, H., Chang, Y.N., Bai, X., Liu, S., Yuan, Q., Gu, W., Li, J., Chen, K., Xing, G., and Xing, G., Nanoscale, 2017, vol. 9, p. 12516. https://doi.org/10.1039/c7nr04365a

  45. Piotrowski, P., Klimek, K., Ginalska, G., and Kaim, A., Materials, 2021, vol. 14, p. 1566. https://doi.org/10.3390/ma14061566

  46. Radic, S., Nedumpully-Govindan, P., Chen, R., Salonen, E., Brown, J.M., Ke, P.C., and Ding, F., Nanoscale, 2014, 6, p. 8340. https://doi.org/10.1039/c4nr01544d

  47. Yang, L., Hua, S., Zhou, Z., Wang, G., Jiang, F., and Liu, Y., Colloids Surf., 2017, vol. 157, p. 261. https://doi.org/10.1016/j.colsurfb.2017.05.065

  48. Alavi, M. and Karimi, N., Artif. Cells Nanomed., Biotechnol., 2017, vol. 46, p., 2066. https://doi.org/10.1080/21691401.2017.1408121

  49. Rajeshkumar, S. and Rinitha, G., OpenNano., 2018, vol. 3, p. 18. https://doi.org/10.1016/j.onano.2018.03.001

  50. Sinha, T., Ahmaruzzaman, M., Adhikari, P.P., and Bora, R., ACS Sustainable Chem. Eng., 2017, vol. 5, p. 4645. https://doi.org/10.1021/acssuschemeng.6b03114

  51. Rafique, R., Arshia, Kanwal, Khan, K.M., Chigurupati, S., Salar, U., Taha, M., and Perveen, S., Lett. Drug Des. Discover., 2020, vol. 17, p. 1177. https://doi.org/10.2174/1570180817999200424074455

  52. Kop, T.J., Jakovljević, D.M., Živković, L.S., Žekić, A., Beškoski, V.P., Milić, D.R., Gojgić-Cvijović, G.D., and Bjelaković, M.S., Eur. Polym. J., 2020, vol. 123, p. 109461. https://doi.org/10.1016/j.eurpolymj.2019.109461

  53. Sabounchei, S.J., Hashemi, A., Sayadi, M., Bayat, M., Sedghi, A., Karamian, R., Farida, S.H.M., and Gable, R.W., J. Mol. Struct., 2018, vol. 1165, p. 142. https://doi.org/10.1016/j.molstruc.2018.03.124

  54. Djordjevi, A., Canadanovic-Brunet, J., VojinovicMiloradov, M., and Bogdanovic, G., Oxid. Commun., 2005, vol. 27, p. 549.

  55. Serda, M., Szewczyk, G., Krzysztynska-Kuleta, O., Korzuch, J., Dulski, M., Musiol, R., and Sarna, T., ACS Biomater. Sci. Eng., 2020, vol. 6, p. 5930. https://doi.org/10.1021/acsbiomaterials.0c00932

  56. Mouri, E. and Moroi, S., J. Polym. Res., 2018, vol. 25, p. 213. https://doi.org/10.1007/s10965-018-1604-5

  57. Hu, Z., Zhang, D., Yu, L., and Huang, Y., J. Mater. Chem. B, 2018, vol. 6, p. 518. https://doi.org/10.1039/c7tb02624b

  58. Zhao, Y., Jin, B., Peng, R., Ding, L., and Zheng, T., J. Hazard. Mater., 2019, vol. 391, p. 121857. https://doi.org/10.1016/j.jhazmat.2019.121857

  59. Xiao, L., Huang, R., Sulimai, N., Yao, R., Manley, B., Xu, P., Felder, R., Jin, L., Dorn, H.C., and Li, X., ACS Appl. Bio Mater., 2022, vol. 5, p. 2943. https://doi.org/10.1021/acsabm.2c00269

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20170175). We gratefully acknowledge the help from the Central Laboratory, School of Chemical and Material Engineering, Jiangnan University as well.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu Hong or Bingtian Zhao.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Ma, J., Zheng, J. et al. Facile Synthesis of Biocompatible Amine Oxide Grafted Fullerene and Its Antioxidant Performances without Metal Loading. Russ J Gen Chem 92, 2379–2389 (2022). https://doi.org/10.1134/S1070363222110238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222110238

Keywords:

Navigation